001     301493
005     20250521113230.0
024 7 _ |a 10.1002/nbm.70060
|2 doi
024 7 _ |a pmid:40374188
|2 pmid
024 7 _ |a pmc:PMC12081166
|2 pmc
024 7 _ |a 0952-3480
|2 ISSN
024 7 _ |a 1099-1492
|2 ISSN
037 _ _ |a DKFZ-2025-01035
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schüre, Jan-Rüdiger
|0 0000-0002-1472-9471
|b 0
245 _ _ |a Toward Noninvasive High-Resolution In Vivo pH Mapping in Brain Tumors by 31P-Informed deepCEST MRI.
260 _ _ |a New York, NY
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747743461_3489
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The intracellular pH (pHi) is critical for understanding various pathologies, including brain tumors. While conventional pHi measurement through 31P-MRS suffers from low spatial resolution and long scan times, 1H-based APT-CEST imaging offers higher resolution with shorter scan times. This study aims to directly predict 31P-pHi maps from CEST data by using a fully connected neuronal network. Fifteen tumor patients were scanned on a 3-T Siemens PRISMA scanner and received 1H-based CEST and T1 measurement, as well as 31P-MRS. A neural network was trained voxel-wise on CEST and T1 data to predict 31P-pHi values, using data from 11 patients for training and 4 for testing. The predicted pHi maps were additionally down-sampled to the original the 31P-pHi resolution, to be able to calculate the RMSE and analyze the correlation, while higher resolved predictions were compared with conventional CEST metrics. The results demonstrated a general correspondence between the predicted deepCEST pHi maps and the measured 31P-pHi in test patients. However, slight discrepancies were also observed, with a RMSE of 0.04 pH units in tumor regions. High-resolution predictions revealed tumor heterogeneity and features not visible in conventional CEST data, suggesting the model captures unique pH information and is not simply a T1 segmentation. The deepCEST pHi neural network enables the APT-CEST hidden pH-sensitivity and offers pHi maps with higher spatial resolution in shorter scan time compared with 31P-MRS. Although this approach is constrained by the limitations of the acquired data, it can be extended with additional CEST features for future studies, thereby offering a promising approach for 3D pH imaging in a clinical environment.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a 31P‐MRS
|2 Other
650 _ 7 |a AI
|2 Other
650 _ 7 |a APTw
|2 Other
650 _ 7 |a CEST
|2 Other
650 _ 7 |a brain tumor
|2 Other
650 _ 7 |a deep learning
|2 Other
650 _ 7 |a intracellular pH
|2 Other
650 _ 7 |a pHi
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Hydrogen-Ion Concentration
|2 MeSH
650 _ 2 |a Brain Neoplasms: diagnostic imaging
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Neural Networks, Computer
|2 MeSH
700 1 _ |a Rajput, Junaid
|b 1
700 1 _ |a Shrestha, Manoj
|b 2
700 1 _ |a Deichmann, Ralf
|b 3
700 1 _ |a Hattingen, Elke
|b 4
700 1 _ |a Maier, Andreas
|b 5
700 1 _ |a Nagel, Armin M
|0 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
|b 6
|u dkfz
700 1 _ |a Dörfler, Arnd
|b 7
700 1 _ |a Steidl, Eike
|0 0000-0001-7464-0236
|b 8
700 1 _ |a Zaiss, Moritz
|b 9
773 _ _ |a 10.1002/nbm.70060
|g Vol. 38, no. 6, p. e70060
|0 PERI:(DE-600)2002003-X
|n 6
|p e70060
|t NMR in biomedicine
|v 38
|y 2025
|x 0952-3480
909 C O |o oai:inrepo02.dkfz.de:301493
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)054fd7a5195b75b11fbdc5c360276011
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NMR BIOMED : 2022
|d 2024-12-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-12
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21