001     301508
005     20250604143816.0
024 7 _ |a 10.1007/s10549-025-07724-4
|2 doi
024 7 _ |a pmid:40392478
|2 pmid
024 7 _ |a 0167-6806
|2 ISSN
024 7 _ |a 1573-7217
|2 ISSN
037 _ _ |a DKFZ-2025-01047
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Arif, Shumaila
|b 0
245 _ _ |a Predicting the likelihood of carrying BRCA1 or BRCA2 pathogenic variants in high-risk Pakistani breast cancer patients.
260 _ _ |a Dordrecht [u.a.]
|c 2025
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1749040652_17383
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Jul;212(2):291-298
520 _ _ |a Pathogenic variants (PVs) in BRCA1/2 increase the lifetime risk of breast cancer (BC). Predictive algorithms for BRCA1/2 PVs, primarily developed for Caucasian BC patients, often underestimate carrier probability in Asian populations. The recently developed Asian Risk Calculator (ARiCa) aims to predict BRCA1/2 PV likelihood in Malaysian/Singaporean BC patients. This study investigates the ARiCa's performance in Pakistani female BC patients.A cohort of 627 high-risk Pakistani female BC patients was evaluated. Using ARiCa, the likelihood of being a BRCA1/2 carrier was estimated based on factors such as age at diagnosis, ethnicity, bilateral BC status, tumor histopathological features, and family history of BC or ovarian cancer. The tool's discriminative ability was evaluated using the area under the curve (AUC).Of the participants, 133 (21.2%) were BRCA1 carriers, 25 (4.0%) were BRCA2 carriers, and 469 (74.8%) were non-carriers. The mean age at BC diagnosis was 34.3 years (range 19-73). Overall, ARiCa showed well calibration for predicting BRCA1/2 (HL 12.11, P = 0.147), BRCA1 (HL 14.17, P = 0.078), and BRCA2 carriers (HL 9.01, P = 0.342). The tool showed acceptable discrimination for BRCA1/2 (AUC 0.77, 95% CI 0.72-0.81) and BRCA1 carriers (AUC 0.80, 95% CI 0.75-0.84), but lower discrimination for BRCA2 carriers (AUC 0.51, 95% CI 0.39-0.64). At a 21% threshold, ARiCa would recommend BRCA1/2 screening for 43% of patients, with sensitivity and specificity at 73% and 68%, respectively.The ARiCa tool demonstrates strong predictive performance for BRCA1/2 carriers, specifically for BRCA1 carriers in Pakistani BC patients, suggesting its potential clinical utility.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Asian Risk Calculator (ARiCa)
|2 Other
650 _ 7 |a Breast cancer
|2 Other
650 _ 7 |a Pakistan
|2 Other
650 _ 7 |a Risk prediction tool
|2 Other
700 1 _ |a Muhammad, Noor
|b 1
700 1 _ |a Ang, Boon Hong
|b 2
700 1 _ |a Naeemi, Humaira
|b 3
700 1 _ |a Sami, Waqas
|b 4
700 1 _ |a Ho, Weang Kee
|b 5
700 1 _ |a Hamann, Ute
|0 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
|b 6
700 1 _ |a Rashid, Muhammad Usman
|b 7
773 _ _ |a 10.1007/s10549-025-07724-4
|0 PERI:(DE-600)2004077-5
|n 2
|p 291-298
|t Breast cancer research and treatment
|v 212
|y 2025
|x 0167-6806
909 C O |p VDB
|o oai:inrepo02.dkfz.de:301508
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)537e07b3e57b16c7b214fc2242e4326b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-28
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BREAST CANCER RES TR : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
920 1 _ |0 I:(DE-He78)B072-20160331
|k B072
|l Molekulargenetik des Mammakarzinoms
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B072-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21