000301543 001__ 301543
000301543 005__ 20250524113307.0
000301543 0247_ $$2doi$$a10.1016/j.bone.2025.117539
000301543 0247_ $$2pmid$$apmid:40403823
000301543 0247_ $$2ISSN$$a8756-3282
000301543 0247_ $$2ISSN$$a1873-2763
000301543 037__ $$aDKFZ-2025-01064
000301543 041__ $$aEnglish
000301543 082__ $$a610
000301543 1001_ $$aKumar, Rahul$$b0
000301543 245__ $$aThe role of the extracellular matrix protein SPOCK2 for bone physiology and hematopoiesis.
000301543 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
000301543 3367_ $$2DRIVER$$aarticle
000301543 3367_ $$2DataCite$$aOutput Types/Journal article
000301543 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748004930_18488
000301543 3367_ $$2BibTeX$$aARTICLE
000301543 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000301543 3367_ $$00$$2EndNote$$aJournal Article
000301543 520__ $$aThe bone marrow microenvironment (BMM) consists of different cellular and acellular components. These components synergize in regulating the process of hematopoiesis. Various extracellular matrix proteins are found amongst the acellular components. Secreted protein acidic and rich in cysteine (SPARC) is amongst the most abundant glycoproteins in bone. Sparc/osteonectin, cwcv, and Kazal-like domains proteoglycan 2 (SPOCK2) is a member of the SPARC family, and its role in bone metabolism and hematopoiesis has not been investigated. Using female mice deficient for SPOCK2, we assessed the role of SPOCK2 in influencing bone formation, the BMM and hematopoiesis. Using micro-computed tomography we found a significant decrease in trabecular bone volume, bone mineral density and thickness, but increased cortical mineral density in SPOCK2 knockout (KO) versus wildtype (WT) bones. C-terminal telopeptide of type I collagen, a measure of bone resorption, was significantly increased in bone marrow supernatants of SPOCK2 KO mice. In the hematopoietic compartment we found an increase in hematopoietic stem cells, but a decrease of mesenchymal stromal cells and adipocytes in the bone marrow of SPOCK2 KO mice compared to control mice. Megakaryocytes were increased in SPOCK2 KO mice. In summary, deficiency of SPOCK2 leads to several alterations in the BMM. The hematopoietic effects may be due to hematopoietic cell-intrinsic effects in SPOCK2-deficient cells or due to a SPOCK2-deficient niche or both.
000301543 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000301543 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000301543 650_7 $$2Other$$aBone
000301543 650_7 $$2Other$$aBone marrow microenvironment
000301543 650_7 $$2Other$$aExtracellular matrix
000301543 650_7 $$2Other$$aHematopoiesis
000301543 7001_ $$aDas, Subhadeep$$b1
000301543 7001_ $$aMinka, Wahyu$$b2
000301543 7001_ $$aReiter, Celina$$b3
000301543 7001_ $$aPereira, Raquel$$b4
000301543 7001_ $$aFuhrmann, Dominik$$b5
000301543 7001_ $$aSchneider, Richard$$b6
000301543 7001_ $$aSeshire, Anita$$b7
000301543 7001_ $$aReusch, Christof$$b8
000301543 7001_ $$aConche, Claire$$b9
000301543 7001_ $$aImkeller, Katharina$$b10
000301543 7001_ $$aPajevic, Paola Divieti$$b11
000301543 7001_ $$0P:(DE-HGF)0$$aKrause, Daniela S$$b12
000301543 773__ $$0PERI:(DE-600)1496324-3$$a10.1016/j.bone.2025.117539$$gVol. 198, p. 117539 -$$p117539$$tBone$$v198$$x8756-3282$$y2025
000301543 909CO $$ooai:inrepo02.dkfz.de:301543$$pVDB
000301543 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000301543 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000301543 9141_ $$y2025
000301543 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
000301543 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000301543 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000301543 9201_ $$0I:(DE-He78)FM01-20160331$$kFM01$$lDKTK Koordinierungsstelle Frankfurt$$x0
000301543 980__ $$ajournal
000301543 980__ $$aVDB
000301543 980__ $$aI:(DE-He78)FM01-20160331
000301543 980__ $$aUNRESTRICTED