000301574 001__ 301574
000301574 005__ 20250905132803.0
000301574 0247_ $$2doi$$a10.1002/mp.17905
000301574 0247_ $$2pmid$$apmid:40414693
000301574 0247_ $$2ISSN$$a0094-2405
000301574 0247_ $$2ISSN$$a1522-8541
000301574 0247_ $$2ISSN$$a2473-4209
000301574 037__ $$aDKFZ-2025-01082
000301574 041__ $$aEnglish
000301574 082__ $$a610
000301574 1001_ $$0P:(DE-He78)3566034e76f2436178ab0689b135c82b$$aCristoforetti, Remo$$b0$$eFirst author$$udkfz
000301574 245__ $$aScenario-free robust optimization algorithm for IMRT and IMPT treatment planning.
000301574 260__ $$aHoboken, NJ$$bWiley$$c2025
000301574 3367_ $$2DRIVER$$aarticle
000301574 3367_ $$2DataCite$$aOutput Types/Journal article
000301574 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757071645_963
000301574 3367_ $$2BibTeX$$aARTICLE
000301574 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000301574 3367_ $$00$$2EndNote$$aJournal Article
000301574 500__ $$a#EA:E040#LA:E040# / 2025 Jul;52(7):e17905
000301574 520__ $$aRobust treatment planning algorithms for intensity modulated proton therapy (IMPT) and intensity modulated radiation therapy (IMRT) allow for uncertainty reduction in the delivered dose distributions through explicit inclusion of error scenarios. Due to the curse of dimensionality, application of such algorithms can easily become computationally prohibitive.This work proposes a scenario-free probabilistic robust optimization algorithm that overcomes both the runtime and memory limitations typical of traditional robustness algorithms.The scenario-free approach minimizes cost-functions evaluated on expected-dose distributions and total variance. Calculation of these quantities relies on precomputed expected-dose-influence and total-variance-influence matrices, such that no scenarios need to be stored for optimization. The algorithm is developed within matRad and tested in several optimization configurations for photon and proton irradiation plans. A traditional robust optimization algorithm and a margin-based approach are used as a reference to benchmark the performance of the scenario-free algorithm in terms of plan quality, robustness, and computational workload.The implemented scenario-free approach achieves plan quality similar to traditional robust optimization algorithms, and it reduces the distribution of standard deviation within selected structures when variance reduction objectives are defined. Avoiding the storage of individual scenario information allows for the solution of treatment plan optimization problems, including an arbitrary number of error scenarios. The observed computational time required for optimization is close to a nominal, non-robust algorithm and substantially lower compared to the traditional robust approach. Estimated gains in relative runtime range from approximately 5 $\hskip.001pt 5$ - 600 $\hskip.001pt 600$ times with respect to the traditional approach.This work introduces a novel scenario-free optimization approach relying on the precomputation of probabilistic quantities while preserving compatibility with state-of-the-art uncertainty modeling. The measured runtime and memory footprint are independent of the number of included error scenarios and similar to those of non-robust margin-based optimization algorithms, while achieving the required dose and robustness specifications under multiple different optimization conditions. These properties make the scenario-free approach suitable and beneficial for 3D and 4D robust optimization involving a high number of error scenarios and/or CT phases.
000301574 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000301574 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000301574 650_7 $$2Other$$a4D robust optimization
000301574 650_7 $$2Other$$arobustness
000301574 650_7 $$2Other$$atreatment planning
000301574 7001_ $$0P:(DE-He78)ddb0f9912a252431ca90ec91ecc8e0ee$$aHardt, Jennifer Josephine$$b1$$udkfz
000301574 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b2$$eLast author$$udkfz
000301574 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.17905$$gp. mp.17905$$n7$$pe17905$$tMedical physics$$v52$$x0094-2405$$y2025
000301574 909CO $$ooai:inrepo02.dkfz.de:301574$$pVDB
000301574 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3566034e76f2436178ab0689b135c82b$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000301574 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ddb0f9912a252431ca90ec91ecc8e0ee$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000301574 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000301574 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000301574 9141_ $$y2025
000301574 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-13$$wger
000301574 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2022$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000301574 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
000301574 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000301574 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000301574 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000301574 980__ $$ajournal
000301574 980__ $$aVDB
000301574 980__ $$aI:(DE-He78)E040-20160331
000301574 980__ $$aUNRESTRICTED