001     301579
005     20250729124818.0
024 7 _ |a 10.1038/s41586-025-09041-8
|2 doi
024 7 _ |a pmid:40399669
|2 pmid
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a altmetric:177281292
|2 altmetric
037 _ _ |a DKFZ-2025-01087
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Scherer, Michael
|0 P:(DE-He78)684b935434c8fe314d2cf6bd023d384b
|b 0
|e First author
|u dkfz
245 _ _ |a Clonal tracing with somatic epimutations reveals dynamics of blood ageing.
260 _ _ |a London [u.a.]
|c 2025
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753786051_3432
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B370# / 2025 Jul;643(8071):478-487
520 _ _ |a Current approaches used to track stem cell clones through differentiation require genetic engineering1,2 or rely on sparse somatic DNA variants3,4, which limits their wide application. Here we discover that DNA methylation of a subset of CpG sites reflects cellular differentiation, whereas another subset undergoes stochastic epimutations and can serve as digital barcodes of clonal identity. We demonstrate that targeted single-cell profiling of DNA methylation5 at single-CpG resolution can accurately extract both layers of information. To that end, we develop EPI-Clone, a method for transgene-free lineage tracing at scale. Applied to mouse and human haematopoiesis, we capture hundreds of clonal differentiation trajectories across tens of individuals and 230,358 single cells. In mouse ageing, we demonstrate that myeloid bias and low output of old haematopoietic stem cells6 are restricted to a small number of expanded clones, whereas many functionally young-like clones persist in old age. In human ageing, clones with and without known driver mutations of clonal haematopoieis7 are part of a spectrum of age-related clonal expansions that display similar lineage biases. EPI-Clone enables accurate and transgene-free single-cell lineage tracing on hematopoietic cell state landscapes at scale.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Singh, Indranil
|0 0000-0002-2143-986X
|b 1
700 1 _ |a Braun, Martina Maria
|b 2
700 1 _ |a Szu-Tu, Chelsea
|b 3
700 1 _ |a Sanchez Sanchez, Pedro
|0 0000-0002-4846-1813
|b 4
700 1 _ |a Lindenhofer, Dominik
|0 0000-0001-8838-7163
|b 5
700 1 _ |a Jakobsen, Niels Asger
|0 0000-0002-5776-5085
|b 6
700 1 _ |a Körber, Verena
|b 7
700 1 _ |a Kardorff, Michael
|0 0009-0008-9720-6166
|b 8
700 1 _ |a Nitsch, Lena
|b 9
700 1 _ |a Kautz, Pauline
|0 0000-0002-9658-1676
|b 10
700 1 _ |a Rühle, Julia
|b 11
700 1 _ |a Bianchi, Agostina
|b 12
700 1 _ |a Cozzuto, Luca
|b 13
700 1 _ |a Frömel, Robert
|0 0000-0002-0438-8677
|b 14
700 1 _ |a Beneyto-Calabuig, Sergi
|0 0000-0003-3773-8239
|b 15
700 1 _ |a Lareau, Caleb
|0 0000-0003-4179-4807
|b 16
700 1 _ |a Satpathy, Ansuman T
|0 0000-0002-5167-537X
|b 17
700 1 _ |a Beekman, Renée
|0 0000-0001-7081-7874
|b 18
700 1 _ |a Steinmetz, Lars M
|b 19
700 1 _ |a Raffel, Simon
|b 20
700 1 _ |a Ludwig, Leif S
|0 0000-0002-2916-2164
|b 21
700 1 _ |a Vyas, Paresh
|0 0000-0003-3931-0914
|b 22
700 1 _ |a Rodriguez-Fraticelli, Alejo
|0 0000-0002-4017-8714
|b 23
700 1 _ |a Velten, Lars
|0 0000-0002-1233-5874
|b 24
773 _ _ |a 10.1038/s41586-025-09041-8
|0 PERI:(DE-600)1413423-8
|n 8071
|p 478-487
|t Nature
|v 643
|y 2025
|x 0028-0836
909 C O |p VDB
|o oai:inrepo02.dkfz.de:301579
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)684b935434c8fe314d2cf6bd023d384b
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a IF >= 60
|0 StatID:(DE-HGF)9960
|2 StatID
|b NATURE : 2022
|d 2025-01-06
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
920 0 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21