001     301588
005     20250601020843.0
024 7 _ |a 10.1186/s12939-025-02521-3
|2 doi
024 7 _ |a pmid:40420085
|2 pmid
024 7 _ |a altmetric:177428412
|2 altmetric
037 _ _ |a DKFZ-2025-01096
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Jaehn, Philipp
|b 0
245 _ _ |a What can we learn from an intersectionality-informed description of study participants? Results from the German National Cohort.
260 _ _ |a London
|c 2025
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748337771_32433
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Intersectionality has contributed to novel insights in epidemiology. However, participants of epidemiological studies have rarely been characterised from an intersectional perspective. We aimed to show the gained insights of an intersectionality-informed approach to describing a study population by comparing it to a conventional approach.We used data of the German National Cohort (NAKO), which recruited 205,415 participants between 2014 and 2019. In the conventional approach, marginal proportions of educational level, cohabitation status, and country of birth were compared between the study populations of the NAKO and the German census survey (MZ) of 2014. In the intersectionality-informed approach, so-called intersectional population strata were constructed by cross-classifying educational level, cohabitation status, and country of birth. Proportions of these strata were also compared between NAKO and MZ. All analyses were stratified by sex and age group.The conventional approach showed that the proportion of people with low education was lower in the NAKO compared to the MZ in all sex and age strata. Similarly, proportions of all intersectional population strata with low education were lower in the NAKO. Concerning cohabitation, the conventional approach showed that the proportion of those living without a partner was lower in the NAKO than in the MZ for women under 60 and men. The intersectionality-informed approach revealed that the proportions of some subgroups of those living without a partner were higher in the NAKO than in the MZ. These were intersectional population strata who lived without a partner, had a high level of education and were born in Germany. The intersectionality-informed approach revealed similar within-group heterogeneity for country of birth, showing that not all proportions of foreign-born people were lower in the NAKO compared to the MZ. Proportions of foreign-born with high education who lived with a partner were higher.Our results showed that heterogeneity within social categories can be revealed by applying the concept of intersectionality when comparing study participants with an external population. This way, an intersectionality-informed approach contributes to describing social complexity among study participants more precisely. Furthermore, results can be used to reduce participation barriers in a more targeted way.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Cohort study
|2 Other
650 _ 7 |a Intersectionality
|2 Other
650 _ 7 |a Social inequality
|2 Other
650 _ 7 |a Study participants
|2 Other
700 1 _ |a Rach, Stefan
|b 1
700 1 _ |a Bolte, Gabriele
|b 2
700 1 _ |a Mikolajczyk, Rafael
|b 3
700 1 _ |a Merz, Sibille
|b 4
700 1 _ |a Herrera-Espejel, Paula Sofia
|b 5
700 1 _ |a Brand, Tilman
|b 6
700 1 _ |a Führer, Amand
|b 7
700 1 _ |a Berger, Klaus
|b 8
700 1 _ |a Teismann, Henning
|b 9
700 1 _ |a Bohn, Barbara
|b 10
700 1 _ |a Koch-Gallenkamp, Lena
|0 P:(DE-He78)13aa5fe9d9961c9fd67193befb0dcf88
|b 11
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 12
|u dkfz
700 1 _ |a Klett-Tammen, Carolina J
|b 13
700 1 _ |a Castell, Stefanie
|b 14
700 1 _ |a Ebert, Nina
|b 15
700 1 _ |a Emmel, Carina
|b 16
700 1 _ |a Schmidt, Börge
|b 17
700 1 _ |a Gastell, Sylvia
|b 18
700 1 _ |a Schulze, Matthias B
|b 19
700 1 _ |a Obi, Nadia
|b 20
700 1 _ |a Harth, Volker
|b 21
700 1 _ |a Holleczek, Bernd
|b 22
700 1 _ |a Jaskulski, Stefanie
|b 23
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 24
|u dkfz
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 25
|u dkfz
700 1 _ |a Willich, Stefan N
|b 26
700 1 _ |a Keil, Thomas
|b 27
700 1 _ |a Weber, Andrea
|b 28
700 1 _ |a Leitzmann, Michael
|b 29
700 1 _ |a Wirkner, Kerstin
|b 30
700 1 _ |a Meinke-Franze, Claudia
|b 31
700 1 _ |a Schipf, Sabine
|b 32
700 1 _ |a Schikowski, Tamara
|b 33
700 1 _ |a Schneider, Alexandra
|b 34
700 1 _ |a Slesinski, S Claire
|b 35
700 1 _ |a Moreno-Velásquez, Ilais
|b 36
700 1 _ |a Pischon, Tobias
|b 37
700 1 _ |a Holmberg, Christine
|b 38
773 _ _ |a 10.1186/s12939-025-02521-3
|g Vol. 24, no. 1, p. 151
|0 PERI:(DE-600)2092056-8
|n 1
|p 151
|t International journal for equity in health
|v 24
|y 2025
|x 1475-9276
909 C O |o oai:inrepo02.dkfz.de:301588
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)13aa5fe9d9961c9fd67193befb0dcf88
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 25
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J EQUITY HEALTH : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:40:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:40:09Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:40:09Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-28
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie der Krebsfrüherkennung
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21