000301751 001__ 301751
000301751 005__ 20250608020939.0
000301751 0247_ $$2doi$$a10.1093/braincomms/fcaf187
000301751 0247_ $$2pmid$$apmid:40458457
000301751 0247_ $$2pmc$$apmc:PMC12127608
000301751 0247_ $$2altmetric$$aaltmetric:177818890
000301751 037__ $$aDKFZ-2025-01135
000301751 041__ $$aEnglish
000301751 082__ $$a610
000301751 1001_ $$0P:(DE-He78)786ac5888ea8df6998e9b2d30178453c$$aFelici, Alessio$$b0$$eFirst author
000301751 245__ $$aRegression and machine learning approaches identify potential risk factors for glioblastoma multiforme.
000301751 260__ $$a[Oxford]$$bOxford University Press$$c2025
000301751 3367_ $$2DRIVER$$aarticle
000301751 3367_ $$2DataCite$$aOutput Types/Journal article
000301751 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748954692_28540
000301751 3367_ $$2BibTeX$$aARTICLE
000301751 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000301751 3367_ $$00$$2EndNote$$aJournal Article
000301751 500__ $$a#EA:C055#LA:C055#
000301751 520__ $$aGlioblastoma multiforme is a lethal disease, with a 5-year survival rate of <10%. The identification of risk factors for glioblastoma multiforme is essential for the understanding of this disease and could facilitate more effective stratification of high-risk individuals. However, our current knowledge of glioblastoma multiforme risk factors is limited. Given the complexity and heterogeneity of the disease, traditional epidemiological approaches may be insufficient to study risk factors for glioblastoma multiforme. The combination of traditional approaches with machine learning models could prove effective in identifying relevant factors for glioblastoma multiforme risk. In this study, we developed glioblastoma multiformerisk models in the UK Biobank cohort using 576 glioblastoma multiforme cases and 302 602 controls. First, 369 exposures were tested with traditional regression models in a case-control study and significant associations were identified. Subsequently, significant features were filtered based on their completion rate and correlation. The selected exposures were then used to develop two machine learning models: a support vector machine and a Multi-Layer Perceptron. To address the imbalance within the subpopulation, two controls per case with full data were selected, resulting in 442 glioblastoma multiforme cases and 884 controls being analysed with the machine learning models. Relevant factors for glioblastoma multiforme risk were identified by explaining the results of the two models with Shapley Additive explanations. Traditional regression methods identified 38 significant associations between environmental exposures and glioblastoma multiforme risk under the Bonferroni threshold (P < 1.35 × 10-4). Subsequent filtration results in the selection of 12 exposures, which were then analysed with age, sex and a polygenic score using the two machine learning models. Support vector machine and the multi-layer perceptron demonstrated a good sensitivity (0.91 and 0.82, respectively). In addition to age and genetics, Shapley Additive explanations demonstrated significant contributions of insulin-like growth factor 1 blood levels and the right-hand grip strength on the predictions made by the models, with the latter effect potentially being confounded by endogenous testosterone levels. The integration of machine learning with traditional models has the potential to enhance the identification of risk factors for glioblastoma multiforme.
000301751 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000301751 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000301751 650_7 $$2Other$$aGlioblastoma multiforme
000301751 650_7 $$2Other$$aIGF1
000301751 650_7 $$2Other$$aepidemiology
000301751 650_7 $$2Other$$agenomics
000301751 650_7 $$2Other$$amachine learning
000301751 7001_ $$aPeduzzi, Giulia$$b1
000301751 7001_ $$aPellungrini, Roberto$$b2
000301751 7001_ $$00000-0003-3220-9944$$aCampa, Daniele$$b3
000301751 7001_ $$0P:(DE-He78)5323704270b6393dcea70186ffd86bca$$aCanzian, Federico$$b4$$eLast author$$udkfz
000301751 773__ $$0PERI:(DE-600)3020013-1$$a10.1093/braincomms/fcaf187$$gVol. 7, no. 3, p. fcaf187$$n3$$pfcaf187$$tBrain communications$$v7$$x2632-1297$$y2025
000301751 909CO $$ooai:inrepo02.dkfz.de:301751$$pVDB
000301751 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)786ac5888ea8df6998e9b2d30178453c$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000301751 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5323704270b6393dcea70186ffd86bca$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000301751 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000301751 9141_ $$y2025
000301751 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBRAIN COMMUN : 2022$$d2024-12-20
000301751 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000301751 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000301751 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:36:45Z
000301751 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:36:45Z
000301751 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:36:45Z
000301751 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-04-03T10:36:45Z
000301751 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000301751 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-20
000301751 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000301751 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
000301751 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-20
000301751 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-20
000301751 9202_ $$0I:(DE-He78)C055-20160331$$kC055$$lGenomische Epidemiologie$$x0
000301751 9201_ $$0I:(DE-He78)C055-20160331$$kC055$$lGenomische Epidemiologie$$x0
000301751 9200_ $$0I:(DE-He78)C055-20160331$$kC055$$lGenomische Epidemiologie$$x0
000301751 980__ $$ajournal
000301751 980__ $$aVDB
000301751 980__ $$aI:(DE-He78)C055-20160331
000301751 980__ $$aUNRESTRICTED