001     301772
005     20250608021002.0
024 7 _ |a 10.1038/s41467-025-60306-2
|2 doi
024 7 _ |a pmid:40467541
|2 pmid
024 7 _ |a altmetric:177743645
|2 altmetric
037 _ _ |a DKFZ-2025-01152
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Kalinin, Alexandr A
|0 0000-0003-4563-3226
|b 0
245 _ _ |a A versatile information retrieval framework for evaluating profile strength and similarity.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1749132867_6632
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Large-scale profiling assays capture a cell population's state by measuring thousands of biological properties per cell or sample. However, evaluating profile strength and similarity remains challenging due to the high dimensionality and non-linear, heterogeneous nature of measurements. Here, we develop a statistical framework using mean average precision (mAP) as a single, data-driven metric to address this challenge. We validate the mAP framework against established metrics through simulations and real-world data, revealing its ability to capture subtle and meaningful biological differences in cell state. Specifically, we use mAP to assess a sample's phenotypic activity relative to controls, as well as the phenotypic consistency of groups of perturbations (or samples). We evaluate the framework across diverse datasets and on different profile types (image, protein, mRNA), perturbations (CRISPR, gene overexpression, small molecules), and resolutions (single-cell, bulk). The mAP framework, together with our open-source software package copairs, is useful for evaluating high-dimensional profiling data in biological research and drug discovery.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Software
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Gene Expression Profiling: methods
|2 MeSH
650 _ 2 |a Information Storage and Retrieval: methods
|2 MeSH
650 _ 2 |a Computational Biology: methods
|2 MeSH
650 _ 2 |a Phenotype
|2 MeSH
700 1 _ |a Arevalo, John
|0 0000-0002-1138-5036
|b 1
700 1 _ |a Serrano, Erik
|b 2
700 1 _ |a Vulliard, Loan
|0 P:(DE-He78)0c2194ad1f41bacabc3124d343a91476
|b 3
|u dkfz
700 1 _ |a Tsang, Hillary
|b 4
700 1 _ |a Bornholdt, Michael
|b 5
700 1 _ |a Muñoz, Alán F
|b 6
700 1 _ |a Sivagurunathan, Suganya
|0 0000-0002-9778-5400
|b 7
700 1 _ |a Rajwa, Bartek
|b 8
700 1 _ |a Carpenter, Anne E
|0 0000-0003-1555-8261
|b 9
700 1 _ |a Way, Gregory P
|0 0000-0002-0503-9348
|b 10
700 1 _ |a Singh, Shantanu
|0 0000-0003-3150-3025
|b 11
773 _ _ |a 10.1038/s41467-025-60306-2
|g Vol. 16, no. 1, p. 5181
|0 PERI:(DE-600)2553671-0
|n 1
|p 5181
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
909 C O |o oai:inrepo02.dkfz.de:301772
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)0c2194ad1f41bacabc3124d343a91476
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
920 1 _ |0 I:(DE-He78)D260-20160331
|k D260
|l NWG Systemimmunologie und Einzelzell-Biologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D260-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21