000301773 001__ 301773
000301773 005__ 20250803021819.0
000301773 0247_ $$2doi$$a10.1002/mp.17911
000301773 0247_ $$2pmid$$apmid:40467957
000301773 0247_ $$2ISSN$$a0094-2405
000301773 0247_ $$2ISSN$$a1522-8541
000301773 0247_ $$2ISSN$$a2473-4209
000301773 0247_ $$2altmetric$$aaltmetric:178338145
000301773 037__ $$aDKFZ-2025-01153
000301773 041__ $$aEnglish
000301773 082__ $$a610
000301773 1001_ $$0P:(DE-He78)3c462b1378ce0906e7320c94e514abfa$$aMaier, Joscha$$b0$$eFirst author$$udkfz
000301773 245__ $$aDeep learning-based cone-beam CT motion compensation with single-view temporal resolution.
000301773 260__ $$aHoboken, NJ$$bWiley$$c2025
000301773 3367_ $$2DRIVER$$aarticle
000301773 3367_ $$2DataCite$$aOutput Types/Journal article
000301773 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753868030_25932
000301773 3367_ $$2BibTeX$$aARTICLE
000301773 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000301773 3367_ $$00$$2EndNote$$aJournal Article
000301773 500__ $$a#EA:E025#LA:E025# / 2025 Jul;52(7):e17911
000301773 520__ $$aCone-beam CT (CBCT) scans that are affected by motion often require motion compensation to reduce artifacts or to reconstruct 4D (3D+time) representations of the patient. To do so, most existing strategies rely on some sort of gating strategy that sorts the acquired projections into motion bins. Subsequently, these bins can be reconstructed individually before further post-processing may be applied to improve image quality. While this concept is useful for periodic motion patterns, it fails in case of non-periodic motion as observed, for example, in irregularly breathing patients.To address this issue and to increase temporal resolution, we propose the deep single angle-based motion compensation (SAMoCo).To avoid gating, and therefore its downsides, the deep SAMoCo trains a U-net-like network to predict displacement vector fields (DVFs) representing the motion that occurred between any two given time points of the scan. To do so, 4D clinical CT scans are used to simulate 4D CBCT scans as well as the corresponding ground truth DVFs that map between the different motion states of the scan. The network is then trained to predict these DVFs as a function of the respective projection views and an initial 3D reconstruction. Once the network is trained, an arbitrary motion state corresponding to a certain projection view of the scan can be recovered by estimating DVFs from any other state or view and by considering them during reconstruction.Applied to 4D CBCT simulations of breathing patients, the deep SAMoCo provides high-quality reconstructions for periodic and non-periodic motion. Here, the deviations with respect to the ground truth are less than 27 HU on average, while respiratory motion, or the diaphragm position, can be resolved with an accuracy of about 0.75 mm. Similar results were obtained for real measurements where a high correlation with external motion monitoring signals could be observed, even in patients with highly irregular respiration.The ability to estimate DVFs as a function of two arbitrary projection views and an initial 3D reconstruction makes deep SAMoCo applicable to arbitrary motion patterns with single-view temporal resolution. Therefore, the deep SAMoCo is particularly useful for cases with unsteady breathing, compensation of residual motion during a breath-hold scan, or scans with fast gantry rotation times in which the data acquisition only covers a very limited number of breathing cycles. Furthermore, not requiring gating signals may simplify the clinical workflow and reduces the time needed for patient preparation.
000301773 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000301773 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000301773 650_7 $$2Other$$a4D CBCT
000301773 650_7 $$2Other$$adeep learning
000301773 650_7 $$2Other$$amotion compensation
000301773 7001_ $$0P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aSawall, Stefan$$b1$$udkfz
000301773 7001_ $$aArheit, Marcel$$b2
000301773 7001_ $$aPaysan, Pascal$$b3
000301773 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelriess, Marc$$b4$$eLast author$$udkfz
000301773 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.17911$$gp. mp.17911$$n7$$pe17911$$tMedical physics$$v52$$x0094-2405$$y2025
000301773 909CO $$ooai:inrepo02.dkfz.de:301773$$pVDB
000301773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c462b1378ce0906e7320c94e514abfa$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000301773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000301773 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000301773 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000301773 9141_ $$y2025
000301773 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-13$$wger
000301773 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2022$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000301773 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
000301773 9202_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000301773 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000301773 9200_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000301773 980__ $$ajournal
000301773 980__ $$aVDB
000301773 980__ $$aI:(DE-He78)E025-20160331
000301773 980__ $$aUNRESTRICTED