001     301773
005     20250803021819.0
024 7 _ |a 10.1002/mp.17911
|2 doi
024 7 _ |a pmid:40467957
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
024 7 _ |a altmetric:178338145
|2 altmetric
037 _ _ |a DKFZ-2025-01153
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Maier, Joscha
|0 P:(DE-He78)3c462b1378ce0906e7320c94e514abfa
|b 0
|e First author
|u dkfz
245 _ _ |a Deep learning-based cone-beam CT motion compensation with single-view temporal resolution.
260 _ _ |a Hoboken, NJ
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753868030_25932
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E025#LA:E025# / 2025 Jul;52(7):e17911
520 _ _ |a Cone-beam CT (CBCT) scans that are affected by motion often require motion compensation to reduce artifacts or to reconstruct 4D (3D+time) representations of the patient. To do so, most existing strategies rely on some sort of gating strategy that sorts the acquired projections into motion bins. Subsequently, these bins can be reconstructed individually before further post-processing may be applied to improve image quality. While this concept is useful for periodic motion patterns, it fails in case of non-periodic motion as observed, for example, in irregularly breathing patients.To address this issue and to increase temporal resolution, we propose the deep single angle-based motion compensation (SAMoCo).To avoid gating, and therefore its downsides, the deep SAMoCo trains a U-net-like network to predict displacement vector fields (DVFs) representing the motion that occurred between any two given time points of the scan. To do so, 4D clinical CT scans are used to simulate 4D CBCT scans as well as the corresponding ground truth DVFs that map between the different motion states of the scan. The network is then trained to predict these DVFs as a function of the respective projection views and an initial 3D reconstruction. Once the network is trained, an arbitrary motion state corresponding to a certain projection view of the scan can be recovered by estimating DVFs from any other state or view and by considering them during reconstruction.Applied to 4D CBCT simulations of breathing patients, the deep SAMoCo provides high-quality reconstructions for periodic and non-periodic motion. Here, the deviations with respect to the ground truth are less than 27 HU on average, while respiratory motion, or the diaphragm position, can be resolved with an accuracy of about 0.75 mm. Similar results were obtained for real measurements where a high correlation with external motion monitoring signals could be observed, even in patients with highly irregular respiration.The ability to estimate DVFs as a function of two arbitrary projection views and an initial 3D reconstruction makes deep SAMoCo applicable to arbitrary motion patterns with single-view temporal resolution. Therefore, the deep SAMoCo is particularly useful for cases with unsteady breathing, compensation of residual motion during a breath-hold scan, or scans with fast gantry rotation times in which the data acquisition only covers a very limited number of breathing cycles. Furthermore, not requiring gating signals may simplify the clinical workflow and reduces the time needed for patient preparation.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a 4D CBCT
|2 Other
650 _ 7 |a deep learning
|2 Other
650 _ 7 |a motion compensation
|2 Other
700 1 _ |a Sawall, Stefan
|0 P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51
|b 1
|u dkfz
700 1 _ |a Arheit, Marcel
|b 2
700 1 _ |a Paysan, Pascal
|b 3
700 1 _ |a Kachelriess, Marc
|0 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1002/mp.17911
|g p. mp.17911
|0 PERI:(DE-600)1466421-5
|n 7
|p e17911
|t Medical physics
|v 52
|y 2025
|x 0094-2405
909 C O |p VDB
|o oai:inrepo02.dkfz.de:301773
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)3c462b1378ce0906e7320c94e514abfa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
920 2 _ |0 I:(DE-He78)E025-20160331
|k E025
|l E025 Röntgenbildgebung und Computertomographie
|x 0
920 1 _ |0 I:(DE-He78)E025-20160331
|k E025
|l E025 Röntgenbildgebung und Computertomographie
|x 0
920 0 _ |0 I:(DE-He78)E025-20160331
|k E025
|l E025 Röntgenbildgebung und Computertomographie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E025-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21