000301775 001__ 301775
000301775 005__ 20250803021820.0
000301775 0247_ $$2doi$$a10.1002/mp.17910
000301775 0247_ $$2pmid$$apmid:40468155
000301775 0247_ $$2ISSN$$a0094-2405
000301775 0247_ $$2ISSN$$a1522-8541
000301775 0247_ $$2ISSN$$a2473-4209
000301775 0247_ $$2altmetric$$aaltmetric:178459848
000301775 037__ $$aDKFZ-2025-01155
000301775 041__ $$aEnglish
000301775 082__ $$a610
000301775 1001_ $$0P:(DE-He78)f3e579ec71a1981ca9c53351c460460b$$aKabelac, Anton Fritz$$b0$$eFirst author$$udkfz
000301775 245__ $$aLatent space reconstruction for missing data problems in CT.
000301775 260__ $$aHoboken, NJ$$bWiley$$c2025
000301775 3367_ $$2DRIVER$$aarticle
000301775 3367_ $$2DataCite$$aOutput Types/Journal article
000301775 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753867894_25930
000301775 3367_ $$2BibTeX$$aARTICLE
000301775 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000301775 3367_ $$00$$2EndNote$$aJournal Article
000301775 500__ $$a#EA:E025#LA:E025# / 2025 Jul;52(7):e17910
000301775 520__ $$aThe reconstruction of a computed tomography (CT) image can be compromised by artifacts, which, in many cases, reduce the diagnostic value of the image. These artifacts often result from missing or corrupt regions in the projection data, for example, by truncation, metal, or limited angle acquisitions.In this work, we introduce a novel deep learning-based framework, latent space reconstruction (LSR), which enables correction of various types of artifacts arising from missing or corrupted data.First, we train a generative neural network on uncorrupted CT images. After training, we iteratively search for the point in the latent space of this network that best matches the compromised projection data we measured. Once an optimal point is found, forward-projection of the generated CT image can be used to inpaint the corrupted or incomplete regions of the measured raw data.We used LSR to correct for truncation and metal artifacts. For the truncation artifact correction, images corrected by LSR show effective artifact suppression within the field of measurement (FOM), alongside a substantial high-quality extension of the FOM compared to other methods. For the metal artifact correction, images corrected by LSR demonstrate effective artifact reduction, providing a clearer view of the surrounding tissues and anatomical details.The results indicate that LSR is effective in correcting metal and truncation artifacts. Furthermore, the versatility of LSR allows its application to various other types of artifacts resulting from missing or corrupt data.
000301775 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000301775 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000301775 650_7 $$2Other$$acomputed tomography
000301775 650_7 $$2Other$$adeep learning
000301775 650_7 $$2Other$$amissing data
000301775 7001_ $$0P:(DE-He78)9f72962d56560b57e5630885c8f8b31d$$aEulig, Elias$$b1$$udkfz
000301775 7001_ $$0P:(DE-He78)3c462b1378ce0906e7320c94e514abfa$$aMaier, Joscha$$b2$$udkfz
000301775 7001_ $$0P:(DE-He78)cabbfdc2fdfe17c047e5ec8d90438e18$$aHammermann, Maximilian$$b3$$udkfz
000301775 7001_ $$0P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c$$aKnaup, Michael$$b4$$udkfz
000301775 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelriess, Marc$$b5$$eLast author$$udkfz
000301775 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.17910$$gp. mp.17910$$n7$$pe17910$$tMedical physics$$v52$$x0094-2405$$y2025
000301775 909CO $$ooai:inrepo02.dkfz.de:301775$$pVDB
000301775 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f3e579ec71a1981ca9c53351c460460b$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000301775 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9f72962d56560b57e5630885c8f8b31d$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000301775 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c462b1378ce0906e7320c94e514abfa$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000301775 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cabbfdc2fdfe17c047e5ec8d90438e18$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000301775 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000301775 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000301775 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000301775 9141_ $$y2025
000301775 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-13$$wger
000301775 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2022$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-13
000301775 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-13
000301775 9202_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000301775 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000301775 9200_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000301775 980__ $$ajournal
000301775 980__ $$aVDB
000301775 980__ $$aI:(DE-He78)E025-20160331
000301775 980__ $$aUNRESTRICTED