001     301775
005     20250803021820.0
024 7 _ |a 10.1002/mp.17910
|2 doi
024 7 _ |a pmid:40468155
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
024 7 _ |a altmetric:178459848
|2 altmetric
037 _ _ |a DKFZ-2025-01155
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kabelac, Anton Fritz
|0 P:(DE-He78)f3e579ec71a1981ca9c53351c460460b
|b 0
|e First author
|u dkfz
245 _ _ |a Latent space reconstruction for missing data problems in CT.
260 _ _ |a Hoboken, NJ
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753867894_25930
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E025#LA:E025# / 2025 Jul;52(7):e17910
520 _ _ |a The reconstruction of a computed tomography (CT) image can be compromised by artifacts, which, in many cases, reduce the diagnostic value of the image. These artifacts often result from missing or corrupt regions in the projection data, for example, by truncation, metal, or limited angle acquisitions.In this work, we introduce a novel deep learning-based framework, latent space reconstruction (LSR), which enables correction of various types of artifacts arising from missing or corrupted data.First, we train a generative neural network on uncorrupted CT images. After training, we iteratively search for the point in the latent space of this network that best matches the compromised projection data we measured. Once an optimal point is found, forward-projection of the generated CT image can be used to inpaint the corrupted or incomplete regions of the measured raw data.We used LSR to correct for truncation and metal artifacts. For the truncation artifact correction, images corrected by LSR show effective artifact suppression within the field of measurement (FOM), alongside a substantial high-quality extension of the FOM compared to other methods. For the metal artifact correction, images corrected by LSR demonstrate effective artifact reduction, providing a clearer view of the surrounding tissues and anatomical details.The results indicate that LSR is effective in correcting metal and truncation artifacts. Furthermore, the versatility of LSR allows its application to various other types of artifacts resulting from missing or corrupt data.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a computed tomography
|2 Other
650 _ 7 |a deep learning
|2 Other
650 _ 7 |a missing data
|2 Other
700 1 _ |a Eulig, Elias
|0 P:(DE-He78)9f72962d56560b57e5630885c8f8b31d
|b 1
|u dkfz
700 1 _ |a Maier, Joscha
|0 P:(DE-He78)3c462b1378ce0906e7320c94e514abfa
|b 2
|u dkfz
700 1 _ |a Hammermann, Maximilian
|0 P:(DE-He78)cabbfdc2fdfe17c047e5ec8d90438e18
|b 3
|u dkfz
700 1 _ |a Knaup, Michael
|0 P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c
|b 4
|u dkfz
700 1 _ |a Kachelriess, Marc
|0 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
|b 5
|e Last author
|u dkfz
773 _ _ |a 10.1002/mp.17910
|g p. mp.17910
|0 PERI:(DE-600)1466421-5
|n 7
|p e17910
|t Medical physics
|v 52
|y 2025
|x 0094-2405
909 C O |p VDB
|o oai:inrepo02.dkfz.de:301775
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)f3e579ec71a1981ca9c53351c460460b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)9f72962d56560b57e5630885c8f8b31d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)3c462b1378ce0906e7320c94e514abfa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)cabbfdc2fdfe17c047e5ec8d90438e18
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)1795257b60b20a0d76c90e1d886faa5c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-13
920 2 _ |0 I:(DE-He78)E025-20160331
|k E025
|l E025 Röntgenbildgebung und Computertomographie
|x 0
920 1 _ |0 I:(DE-He78)E025-20160331
|k E025
|l E025 Röntgenbildgebung und Computertomographie
|x 0
920 0 _ |0 I:(DE-He78)E025-20160331
|k E025
|l E025 Röntgenbildgebung und Computertomographie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E025-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21