000301901 001__ 301901
000301901 005__ 20250610113540.0
000301901 0247_ $$2doi$$a10.1186/s40658-025-00768-x
000301901 0247_ $$2pmid$$apmid:40478365
000301901 0247_ $$2pmc$$apmc:PMC12144006
000301901 037__ $$aDKFZ-2025-01171
000301901 041__ $$aEnglish
000301901 082__ $$a610
000301901 1001_ $$00000-0001-8765-1276$$aZounek, Adrian Jun$$b0
000301901 245__ $$a3D printing of radioactive wall-less PET phantoms improves threshold-based target delineation and quantification.
000301901 260__ $$aHeidelberg$$bSpringerOpen$$c2025
000301901 3367_ $$2DRIVER$$aarticle
000301901 3367_ $$2DataCite$$aOutput Types/Journal article
000301901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1749542157_29233
000301901 3367_ $$2BibTeX$$aARTICLE
000301901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000301901 3367_ $$00$$2EndNote$$aJournal Article
000301901 520__ $$aValidation of threshold-based PET segmentation and PET quantification is typically performed with fillable phantoms. Theoretical considerations show that the inactive walls of the phantom cavities introduce a contrast dependence of the volume-reproducing threshold (VRT), potentially leading to segmentation errors and therefore miscalculations of target volumes. The goal of this study was to experimentally show the contrast independence of the VRT when using wall-less phantoms.Radioactive spheres were produced according to NEMA specifications (D = 10/13/17/22/28/37 mm) using a stereolithographic (SLA) 3D printer. For comparison, hollow spheres were filled with a similar activity concentration. Image data from both sphere types were acquired with five different signal-to-background ratios (SBR = 2/4/6/8/10) using a Siemens mCT 20 and a Biograph 64 TruePoint PET/CT system. Results from wall-less and fillable spheres were compared to evaluate contrast dependence and segmentation accuracy based on VRT and intensity profiles. Wall-less phantoms demonstrated consistent VRT values, with a coefficient of variation of 2% over all SBRs, indicating independence from contrast. Conversely, fillable phantoms exhibited significant VRT variability, with a coefficient of variation (CV) of 9% over all SBRs and up to 40% volume overestimation at low contrast. Additionally, activity distribution in the printed spheres was evaluated using PET-based statistical analysis and autoradiography. The PET intensity distribution in the printed material was highly uniform (CV = 4.2%), with a Kullback-Leibler divergence near zero and no statistically significant difference to the fillable spheres. Autoradiography revealed microscopic regions with elevated counts, showing a CV of 11.7%, which was effectively reduced to 2.4% after Gaussian filtering.The theoretical predictions of a significant influence of inactive walls in low-contrast images and contrast-independent VRT in wall-less phantoms were successfully confirmed. SLA 3D printing of phantoms is a promising method for the reliable evaluation of PET quantification methods, particularly in low-contrast scenarios commonly encountered in clinical settings.
000301901 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000301901 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000301901 650_7 $$2Other$$a3D printing
000301901 650_7 $$2Other$$aPET
000301901 650_7 $$2Other$$aPhantoms
000301901 650_7 $$2Other$$aSegmentation
000301901 7001_ $$aJoerg, Nico Maximilian$$b1
000301901 7001_ $$aLindheimer, Felix$$b2
000301901 7001_ $$aZatcepin, Artem$$b3
000301901 7001_ $$aPalumbo, Giovanna$$b4
000301901 7001_ $$aOos, Rosel$$b5
000301901 7001_ $$aDelker, Astrid$$b6
000301901 7001_ $$aGildehaus, Franz Josef$$b7
000301901 7001_ $$aBollenbacher, Andreas$$b8
000301901 7001_ $$aBoening, Guido$$b9
000301901 7001_ $$aBartenstein, Peter$$b10
000301901 7001_ $$0P:(DE-HGF)0$$aBrendel, Matthias$$b11
000301901 7001_ $$0P:(DE-HGF)0$$aAlbert, Nathalie Lisa$$b12
000301901 7001_ $$aZiegler, Sibylle$$b13
000301901 7001_ $$aKaiser, Lena$$b14
000301901 773__ $$0PERI:(DE-600)2768912-8$$a10.1186/s40658-025-00768-x$$gVol. 12, no. 1, p. 53$$n1$$p53$$tEJNMMI Physics$$v12$$x2197-7364$$y2025
000301901 909CO $$ooai:inrepo02.dkfz.de:301901$$pVDB
000301901 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000301901 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000301901 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000301901 9141_ $$y2025
000301901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEJNMMI PHYS : 2022$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:38:06Z
000301901 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:38:06Z
000301901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:38:06Z
000301901 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-04-10T15:38:06Z
000301901 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-31
000301901 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-31
000301901 9201_ $$0I:(DE-He78)MU01-20160331$$kMU01$$lDKTK Koordinierungsstelle München$$x0
000301901 980__ $$ajournal
000301901 980__ $$aVDB
000301901 980__ $$aI:(DE-He78)MU01-20160331
000301901 980__ $$aUNRESTRICTED