001     301905
005     20250615021042.0
024 7 _ |a 10.1186/s12916-025-04187-8
|2 doi
024 7 _ |a pmid:40484934
|2 pmid
024 7 _ |a altmetric:177931600
|2 altmetric
037 _ _ |a DKFZ-2025-01175
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Jäger, Susanne
|b 0
245 _ _ |a Nut consumption, linoleic and α-linolenic acid intakes, and genetics: how fatty acid desaturase 1 impacts plasma fatty acids and type 2 diabetes risk in EPIC-InterAct and PREDIMED studies.
260 _ _ |a London
|c 2025
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1749542078_29234
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dietary guidelines recommend replacing saturated fatty acid with unsaturated fats, particularly polyunsaturated fatty acids. Cohort studies do not suggest a clear benefit of higher intake of polyunsaturated fatty acids but, in contrast, higher circulating linoleic acid (LA) levels-reflective of dietary LA intake, are associated with a reduced risk of type 2 diabetes. However, genetic variants in the fatty acid desaturase 1 gene (FADS1) may influence individual responses to plant-based fats. We explored whether FADS1 variants influence the relationships of LA and α-linolenic acid (ALA) intakes and nut consumption with plasma phospholipid fatty acid profiles and type 2 diabetes risk in a large-scale cohort study and a randomized controlled trial.In the EPIC-InterAct case-cohort (7,498 type 2 diabetes cases, 10,087 subcohort participants), we investigated interactions of dietary and plasma phospholipid fatty acids and nut consumption with FADS1 rs174547 in relation to incident type 2 diabetes using weighted Cox regression. In PREDIMED (492 participants in the Mediterranean Diet + Nuts intervention group, 436 participants in the control group), we compared changes in plasma phospholipid FAs from baseline to year 1.In EPIC-InterAct and PREDIMED, nut consumption was positively associated with LA plasma levels and inversely with arachidonic acid, the latter becoming stronger with increasing number of the minor rs174547 C allele (p interaction EPIC-InterAct: 0.030, PREDIMED: 0.003). Although the inverse association of nut consumption with diabetes seemed stronger in participants with rs174547 CC-genotype (HR: 0.73, 95% CI: 0.54-1.00) compared with CT (0.94, 0.81-1.10) or TT (0.90, 0.78-1.05) in EPIC-InterAct, this interaction was not statistically significant.FADS1 variation modified the effect of nut consumption on circulating FAs. We did not observe clear evidence that it modified the association between nut consumption and type 2 diabetes risk.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Cohort study
|2 Other
650 _ 7 |a Fatty acid desaturase
|2 Other
650 _ 7 |a Plasma phospholipid fatty acids
|2 Other
650 _ 7 |a Polyunsaturated fatty acids
|2 Other
650 _ 7 |a Randomized controlled trial
|2 Other
650 _ 7 |a Fatty Acid Desaturases
|0 EC 1.14.19.-
|2 NLM Chemicals
650 _ 7 |a Delta-5 Fatty Acid Desaturase
|2 NLM Chemicals
650 _ 7 |a FADS1 protein, human
|0 EC 1.14.19.3
|2 NLM Chemicals
650 _ 7 |a alpha-Linolenic Acid
|0 0RBV727H71
|2 NLM Chemicals
650 _ 7 |a Linoleic Acid
|0 9KJL21T0QJ
|2 NLM Chemicals
650 _ 7 |a Fatty Acids
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Diabetes Mellitus, Type 2: genetics
|2 MeSH
650 _ 2 |a Diabetes Mellitus, Type 2: blood
|2 MeSH
650 _ 2 |a Diabetes Mellitus, Type 2: epidemiology
|2 MeSH
650 _ 2 |a Fatty Acid Desaturases: genetics
|2 MeSH
650 _ 2 |a Delta-5 Fatty Acid Desaturase
|2 MeSH
650 _ 2 |a alpha-Linolenic Acid: administration & dosage
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Linoleic Acid: administration & dosage
|2 MeSH
650 _ 2 |a Linoleic Acid: blood
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Nuts
|2 MeSH
650 _ 2 |a Fatty Acids: blood
|2 MeSH
650 _ 2 |a Cohort Studies
|2 MeSH
650 _ 2 |a Polymorphism, Single Nucleotide
|2 MeSH
650 _ 2 |a Risk Factors
|2 MeSH
700 1 _ |a Kuxhaus, Olga
|b 1
700 1 _ |a Prada, Marcela
|b 2
700 1 _ |a Huybrechts, Inge
|b 3
700 1 _ |a Tong, Tammy Y N
|b 4
700 1 _ |a Forouhi, Nita G
|b 5
700 1 _ |a Razquin, Cristina
|b 6
700 1 _ |a Corella, Dolores
|b 7
700 1 _ |a Martinez-Gonzalez, Miguel A
|b 8
700 1 _ |a Dahm, Christina C
|b 9
700 1 _ |a Ibsen, Daniel B
|b 10
700 1 _ |a Tjønneland, Anne
|b 11
700 1 _ |a Halkjær, Jytte
|b 12
700 1 _ |a Marques, Chloé
|b 13
700 1 _ |a Cadeau, Claire
|b 14
700 1 _ |a Ren, Xuan
|b 15
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 16
|u dkfz
700 1 _ |a Bendinelli, Benedetta
|b 17
700 1 _ |a Agnoli, Claudia
|b 18
700 1 _ |a Catalano, Alberto
|b 19
700 1 _ |a Farràs, Marta
|b 20
700 1 _ |a Sánchez, Maria-Jose
|b 21
700 1 _ |a López, María Dolores Chirlaque
|b 22
700 1 _ |a Guevara, Marcela
|b 23
700 1 _ |a Aune, Dagfinn
|b 24
700 1 _ |a Sharp, Stephen J
|b 25
700 1 _ |a Wareham, Nicholas J
|b 26
700 1 _ |a Schulze, Matthias B
|b 27
773 _ _ |a 10.1186/s12916-025-04187-8
|g Vol. 23, no. 1, p. 344
|0 PERI:(DE-600)2131669-7
|n 1
|p 344
|t BMC medicine
|v 23
|y 2025
|x 1741-7015
909 C O |o oai:inrepo02.dkfz.de:301905
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC MED : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:34:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:34:47Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2024-04-10T15:34:47Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-05
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BMC MED : 2022
|d 2024-12-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-05
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21