001     301911
005     20250730112830.0
024 7 _ |a 10.1038/s43018-025-00976-5
|2 doi
024 7 _ |a pmid:40481322
|2 pmid
024 7 _ |a altmetric:177852096
|2 altmetric
037 _ _ |a DKFZ-2025-01181
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Yuan, Dongsheng
|b 0
245 _ _ |a crossNN is an explainable framework for cross-platform DNA methylation-based classification of tumors.
260 _ _ |a London
|c 2025
|b Nature Research
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753867675_25932
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Jul;6(7):1283-1294
520 _ _ |a DNA methylation-based classification of (brain) tumors has emerged as a powerful and indispensable diagnostic technique. Initial implementations used methylation microarrays for data generation, while most current classifiers rely on a fixed methylation feature space. This makes them incompatible with other platforms, especially different flavors of DNA sequencing. Here, we describe crossNN, a neural network-based machine learning framework that can accurately classify tumors using sparse methylomes obtained on different platforms and with different epigenome coverage and sequencing depth. It outperforms other deep and conventional machine learning models regarding accuracy and computational requirements while still being explainable. We use crossNN to train a pan-cancer classifier that can discriminate more than 170 tumor types across all organ sites. Validation in more than 5,000 tumors profiled on different platforms, including nanopore and targeted bisulfite sequencing, demonstrates its robustness and scalability with 99.1% and 97.8% precision for the brain tumor and pan-cancer models, respectively.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Jugas, Robin
|0 0000-0003-4675-0985
|b 1
700 1 _ |a Pokorna, Petra
|0 0000-0003-1037-878X
|b 2
700 1 _ |a Sterba, Jaroslav
|b 3
700 1 _ |a Slaby, Ondrej
|b 4
700 1 _ |a Schmid, Simone
|b 5
700 1 _ |a Siewert, Christin
|b 6
700 1 _ |a Osberg, Brendan
|b 7
700 1 _ |a Capper, David
|0 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
|b 8
|u dkfz
700 1 _ |a Halldorsson, Skarphedinn
|b 9
700 1 _ |a Vik-Mo, Einar O
|0 0000-0001-8303-4123
|b 10
700 1 _ |a Zeiner, Pia S
|b 11
700 1 _ |a Weber, Katharina
|0 P:(DE-He78)832f5277c0186f22e7704f1930239636
|b 12
|u dkfz
700 1 _ |a Harter, Patrick N
|b 13
700 1 _ |a Thomas, Christian
|0 0000-0002-6642-7774
|b 14
700 1 _ |a Albers, Anne
|b 15
700 1 _ |a Rechsteiner, Markus
|b 16
700 1 _ |a Reimann, Regina
|b 17
700 1 _ |a Appelt, Anton
|b 18
700 1 _ |a Schüller, Ulrich
|0 0000-0002-8731-1121
|b 19
700 1 _ |a Jabareen, Nabil
|b 20
700 1 _ |a Mackowiak, Sebastian
|b 21
700 1 _ |a Ishaque, Naveed
|b 22
700 1 _ |a Eils, Roland
|b 23
700 1 _ |a Lukassen, Sören
|0 0000-0001-7045-6327
|b 24
700 1 _ |a Euskirchen, Philipp
|0 P:(DE-He78)4c0df1e1834aed3b9f4d879f5370029e
|b 25
|u dkfz
773 _ _ |a 10.1038/s43018-025-00976-5
|0 PERI:(DE-600)3005299-3
|n 7
|p 1283-1294
|t Nature cancer
|v 6
|y 2025
|x 2662-1347
909 C O |p VDB
|o oai:inrepo02.dkfz.de:301911
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)51bf9ae9cb5771b30c483e5597ef606c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)832f5277c0186f22e7704f1930239636
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 25
|6 P:(DE-He78)4c0df1e1834aed3b9f4d879f5370029e
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT CANCER : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT CANCER : 2022
|d 2024-12-05
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 0
920 1 _ |0 I:(DE-He78)FM01-20160331
|k FM01
|l DKTK Koordinierungsstelle Frankfurt
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a I:(DE-He78)FM01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21