001     302000
005     20250829102422.0
024 7 _ |a 10.1016/j.ajcnut.2025.04.016
|2 doi
024 7 _ |a pmid:40500642
|2 pmid
024 7 _ |a 0095-9871
|2 ISSN
024 7 _ |a 0002-9165
|2 ISSN
024 7 _ |a 1938-3207
|2 ISSN
024 7 _ |a 1938-3215
|2 ISSN
024 7 _ |a altmetric:177863415
|2 altmetric
037 _ _ |a DKFZ-2025-01199
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Chimera, Bernadette
|b 0
245 _ _ |a Metabolic profile of biodiverse diets in a healthy European cohort.
260 _ _ |a Amsterdam
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756455821_12783
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 122, Issue 1, July 2025, Pages 208-220
520 _ _ |a There is increasing evidence that diets characterized by food biodiversity could contribute to health outcomes. Greater dietary species diversity has been linked to reduced gastrointestinal cancer risk and all-cause mortality. However, mechanistic pathways supporting the association between food biodiversity and health are just beginning to be explored.To characterize the metabolic profile associated with food biodiversity of diets in a pan-European population.Dietary species richness (DSR), or the absolute number of unique species in an individual's diet, was calculated for 7,983 cancer-free control participants within the European Prospective Investigation into Cancer and Nutrition cohort study. Usual dietary intakes in the preceding year were assessed at recruitment with country-specific dietary questionnaires. Metabolomic profiles from blood which included 128 circulating endogenous metabolites,32 polyphenol compounds, and 39 fatty acid isomers were used as biomarkers of potential mechanisms underlying nutrition and health associations. Lasso regression identified key metabolites in discovery and replication sets, and multivariable stepwise linear regression were used to quantify associations between DSR and metabolomic profiles.A total of 52 metabolites were selected using Lasso regression in the replication set, of which 70% were statistically significant in stepwise linear regression. Higher DSR was associated with lower levels of 4 amino acids (e.g., tyrosine, -0.0231, 95% CI: -0.0362, -0.0100, p = 0.0009) and 2 acylcarnitines (e.g., C14:2, -0.0834, 95% CI: -0.1084, -0.0583, p < 0.0001). Conversely, higher levels were observed for 7 amino acids (e.g., tryptophan, -0.0954, 95% CI: -0.1049, -0.0860, p < 0.0001) and 9 polyphenols (e.g., epicatechin, p = 0.0017).In this European middle-aged adult population, the circulating metabolic profiles of biodiverse diets are consistent with the metabolome linked with health-promoting diets, indicating metabolite groups that provide metabolic homeostasis, anti-inflammatory, anti-oxidative stress, and anti-obesogenic properties. These findings support the health benefits of consuming more diverse dietary species and may partially explain the inverse associations found in relation with mortality or gastrointestinal cancer.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Metabolomics
|2 Other
650 _ 7 |a biodiversity
|2 Other
650 _ 7 |a food biodiversity
|2 Other
650 _ 7 |a species richness
|2 Other
700 1 _ |a Cakmak, Emine Koc
|b 1
700 1 _ |a Blanco-Lopez, Jessica
|b 2
700 1 _ |a Berden, Jeroen
|b 3
700 1 _ |a Biessy, Carine
|b 4
700 1 _ |a Keski-Rahkonen, Pekka
|b 5
700 1 _ |a Nicolas, Geneviève
|b 6
700 1 _ |a Berlivet, Justine
|b 7
700 1 _ |a Lachat, Carl
|b 8
700 1 _ |a Srour, Bernard
|b 9
700 1 _ |a Murray, Kris A
|b 10
700 1 _ |a Vineis, Paolo
|b 11
700 1 _ |a Touvier, Mathilde
|b 12
700 1 _ |a Robinson, Oliver Jk
|b 13
700 1 _ |a Hanley-Cook, Giles
|b 14
700 1 _ |a Mangone, Lorenzo
|b 15
700 1 _ |a Zamora-Ros, Raul
|b 16
700 1 _ |a Tumino, Rosario
|b 17
700 1 _ |a Halkjær, Jytte
|b 18
700 1 _ |a Rostgaard-Hansen, Agnetha
|b 19
700 1 _ |a Grioni, Sara
|b 20
700 1 _ |a Sánchez, Maria-Jose
|b 21
700 1 _ |a Marques, Chloé
|b 22
700 1 _ |a Prada, Marcela
|b 23
700 1 _ |a Guevara, Marcela
|b 24
700 1 _ |a Sacerdote, Carlotta
|b 25
700 1 _ |a Santucci de Magistris, Maria
|b 26
700 1 _ |a Jacobs, Inarie
|b 27
700 1 _ |a Yammine, Sahar
|b 28
700 1 _ |a Kliemann, Nathalie
|b 29
700 1 _ |a Verschuren, Monique Wm
|0 P:(DE-HGF)0
|b 30
700 1 _ |a Frenoy, Pauline
|b 31
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 32
|u dkfz
700 1 _ |a Fortner, Renée T
|0 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
|b 33
|u dkfz
700 1 _ |a Skeie, Guri
|b 34
700 1 _ |a Rinaldi, Sabina
|b 35
700 1 _ |a Ferrari, Pietro
|b 36
700 1 _ |a Gunter, Marc J
|b 37
700 1 _ |a Deschasaux-Tanguy, Mélanie
|b 38
700 1 _ |a Huybrechts, Inge
|b 39
773 _ _ |a 10.1016/j.ajcnut.2025.04.016
|g p. S0002916525002321
|0 PERI:(DE-600)1496439-9
|n 1
|p 208-220
|t The American journal of clinical nutrition
|v 122
|y 2025
|x 0095-9871
909 C O |p VDB
|o oai:inrepo02.dkfz.de:302000
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 30
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 32
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 33
|6 P:(DE-He78)74a6af8347ec5cbd4b77e562e10ca1f2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J CLIN NUTR : 2022
|d 2024-12-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b AM J CLIN NUTR : 2022
|d 2024-12-06
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 0
920 1 _ |0 I:(DE-He78)C180-20160331
|k C180
|l Krebsepidemiologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C180-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21