Home > Publications database > From spots to cells: Cell segmentation in spatial transcriptomics with BOMS. > print |
001 | 302015 | ||
005 | 20250614115244.0 | ||
024 | 7 | _ | |a 10.1371/journal.pone.0311458 |2 doi |
024 | 7 | _ | |a pmid:40504785 |2 pmid |
037 | _ | _ | |a DKFZ-2025-01213 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Kamboj, Ocima |b 0 |
245 | _ | _ | |a From spots to cells: Cell segmentation in spatial transcriptomics with BOMS. |
260 | _ | _ | |a San Francisco, California, US |c 2025 |b PLOS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1749820975_3533 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Imaging-based Spatial Transcriptomics methods enable the study of gene expression and regulation in complex tissues at subcellular resolution. However, inaccurate cell segmentation procedures lead to misassignment of mRNAs to individual cells which can introduce errors in downstream analysis. Current methods estimate cell boundaries using auxiliary DAPI/Poly(A) stains. These stains can be difficult to segment, thus requiring manual tuning of the method, and not all mRNA molecules may be assigned to the correct cells. We describe a new method, based on mean shift, that segments the cells based on the spatial locations and the gene labels of the mRNA spots without requiring any auxiliary images. We evaluate the performance of BOMS across various publicly available datasets and demonstrate that it achieves comparable results to the best existing method while being simple to implement and significantly faster in execution. Open-source code is available at https://github.com/sciai-lab/boms. |
536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a RNA, Messenger |2 NLM Chemicals |
650 | _ | 2 | |a Transcriptome |2 MeSH |
650 | _ | 2 | |a Gene Expression Profiling: methods |2 MeSH |
650 | _ | 2 | |a RNA, Messenger: genetics |2 MeSH |
650 | _ | 2 | |a RNA, Messenger: metabolism |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Software |2 MeSH |
650 | _ | 2 | |a Algorithms |2 MeSH |
650 | _ | 2 | |a Image Processing, Computer-Assisted: methods |2 MeSH |
700 | 1 | _ | |a Park, Jeongbin |b 1 |
700 | 1 | _ | |a Stegle, Oliver |0 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3 |b 2 |u dkfz |
700 | 1 | _ | |a Hamprecht, Fred A |0 0000-0003-4148-5043 |b 3 |
773 | _ | _ | |a 10.1371/journal.pone.0311458 |g Vol. 20, no. 6, p. e0311458 - |0 PERI:(DE-600)2267670-3 |n 6 |p e0311458 - |t PLOS ONE |v 20 |y 2025 |x 1932-6203 |
909 | C | O | |o oai:inrepo02.dkfz.de:302015 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PLOS ONE : 2022 |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-02-08T09:37:46Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-02-08T09:37:46Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-02-08T09:37:46Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2024-02-08T09:37:46Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-16 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-16 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-16 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-16 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-16 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-16 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-16 |
920 | 1 | _ | |0 I:(DE-He78)B260-20160331 |k B260 |l B260 Bioinformatik der Genomik und Systemgenetik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B260-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|