001     302015
005     20250614115244.0
024 7 _ |a 10.1371/journal.pone.0311458
|2 doi
024 7 _ |a pmid:40504785
|2 pmid
037 _ _ |a DKFZ-2025-01213
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kamboj, Ocima
|b 0
245 _ _ |a From spots to cells: Cell segmentation in spatial transcriptomics with BOMS.
260 _ _ |a San Francisco, California, US
|c 2025
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1749820975_3533
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Imaging-based Spatial Transcriptomics methods enable the study of gene expression and regulation in complex tissues at subcellular resolution. However, inaccurate cell segmentation procedures lead to misassignment of mRNAs to individual cells which can introduce errors in downstream analysis. Current methods estimate cell boundaries using auxiliary DAPI/Poly(A) stains. These stains can be difficult to segment, thus requiring manual tuning of the method, and not all mRNA molecules may be assigned to the correct cells. We describe a new method, based on mean shift, that segments the cells based on the spatial locations and the gene labels of the mRNA spots without requiring any auxiliary images. We evaluate the performance of BOMS across various publicly available datasets and demonstrate that it achieves comparable results to the best existing method while being simple to implement and significantly faster in execution. Open-source code is available at https://github.com/sciai-lab/boms.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a RNA, Messenger
|2 NLM Chemicals
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Gene Expression Profiling: methods
|2 MeSH
650 _ 2 |a RNA, Messenger: genetics
|2 MeSH
650 _ 2 |a RNA, Messenger: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Software
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
700 1 _ |a Park, Jeongbin
|b 1
700 1 _ |a Stegle, Oliver
|0 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3
|b 2
|u dkfz
700 1 _ |a Hamprecht, Fred A
|0 0000-0003-4148-5043
|b 3
773 _ _ |a 10.1371/journal.pone.0311458
|g Vol. 20, no. 6, p. e0311458 -
|0 PERI:(DE-600)2267670-3
|n 6
|p e0311458 -
|t PLOS ONE
|v 20
|y 2025
|x 1932-6203
909 C O |o oai:inrepo02.dkfz.de:302015
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-08T09:37:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-08T09:37:46Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-02-08T09:37:46Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-02-08T09:37:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
920 1 _ |0 I:(DE-He78)B260-20160331
|k B260
|l B260 Bioinformatik der Genomik und Systemgenetik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B260-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21