Home > Publications database > Functional Characterization of Variants of Unknown Significance of Fibroblast Growth Factor Receptors 1-4 and Comparison With AI Model-Based Prediction. > print |
001 | 302116 | ||
005 | 20250724114202.0 | ||
024 | 7 | _ | |a 10.1200/PO-24-00847 |2 doi |
024 | 7 | _ | |a pmid:40526877 |2 pmid |
037 | _ | _ | |a DKFZ-2025-01248 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Ziegler, Martin |0 P:(DE-He78)62a3cc13c7db450aa0e711ce99b43d7b |b 0 |e First author |u dkfz |
245 | _ | _ | |a Functional Characterization of Variants of Unknown Significance of Fibroblast Growth Factor Receptors 1-4 and Comparison With AI Model-Based Prediction. |
260 | _ | _ | |a Alexandria, VA |c 2025 |b American Society of Clinical Oncology |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1750252938_1996 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:A420#LA:A420# |
520 | _ | _ | |a Fibroblast growth factor receptors (FGFRs; FGFR1, FGFR2, FGFR3, FGFR4) are frequently mutated oncogenes in solid cancers. The oncogenic potential of FGFR rearrangements and few hotspot point mutations is well established, but the majority of variants resulting from point mutations especially outside of the tyrosine kinase domain are currently considered variants of unknown significance (VUS).Recurrent nonkinase domain FGFR VUS variants were collected from the Catalog of Somatic Mutations in Cancer and their oncogenic potential was assessed in vitro by different functional assays. We compiled published clinical and preclinical data on FGFR variants and compared the data with results from our functional assays and pathogenicity predictions of state-of-the-art artificial intelligence (AI) models.We identified 12 novel FGFR extracellular small variants with potential driver function. Comparison of clinical and preclinical data on FGFR variants with pathogenicity predictions of state-of-the-art AI models showed limited usefulness of the AI predictions. Sensitivity profiles of activating FGFR variants to targeted inhibitors were recorded and showed good targetability of FGFR nonkinase domain variants.The collected results extend the spectrum of suitable FGFR variants for potential treatment with FGFR inhibitors in the context of clinical trials and beyond. Current AI models for variant pathogenicity prediction require further refinement for use in oncogenic decision making. |
536 | _ | _ | |a 311 - Zellbiologie und Tumorbiologie (POF4-311) |0 G:(DE-HGF)POF4-311 |c POF4-311 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Receptors, Fibroblast Growth Factor |2 NLM Chemicals |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Artificial Intelligence |2 MeSH |
650 | _ | 2 | |a Neoplasms: genetics |2 MeSH |
650 | _ | 2 | |a Mutation |2 MeSH |
650 | _ | 2 | |a Receptors, Fibroblast Growth Factor: genetics |2 MeSH |
700 | 1 | _ | |a Khoury, Nadira |0 P:(DE-He78)c8bbc9f9a9fd5dc18d7c0a975e4c5198 |b 1 |u dkfz |
700 | 1 | _ | |a Hommerich, Louisa Maxine |0 P:(DE-He78)27d7227a7033caf8638cc763819061a1 |b 2 |u dkfz |
700 | 1 | _ | |a Adler, Heike |0 P:(DE-He78)59f2ca4f23f7a537baf49bdfede6006f |b 3 |u dkfz |
700 | 1 | _ | |a Loges, Sonja |0 P:(DE-He78)1eee9e84c0f8c90a97fe40b6e8252a23 |b 4 |e Last author |u dkfz |
773 | _ | _ | |a 10.1200/PO-24-00847 |g Vol. 9, no. 9, p. e2400847 |0 PERI:(DE-600)2964799-X |n 9 |p e2400847 |t JCO precision oncology |v 9 |y 2025 |x 2473-4284 |
909 | C | O | |o oai:inrepo02.dkfz.de:302116 |p VDB |p OpenAPC |p openCost |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)62a3cc13c7db450aa0e711ce99b43d7b |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)c8bbc9f9a9fd5dc18d7c0a975e4c5198 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)27d7227a7033caf8638cc763819061a1 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)59f2ca4f23f7a537baf49bdfede6006f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)1eee9e84c0f8c90a97fe40b6e8252a23 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-311 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Zellbiologie und Tumorbiologie |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b JCO PRECIS ONCOL : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2025-01-02 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2025-01-02 |
915 | p | c | |a APC keys set |2 APC |0 PC:(DE-HGF)0000 |
915 | p | c | |a Local Funding |2 APC |0 PC:(DE-HGF)0001 |
920 | 2 | _ | |0 I:(DE-He78)A420-20160331 |k A420 |l Personalisierte Medizinische Onkologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)A420-20160331 |k A420 |l Personalisierte Medizinische Onkologie |x 0 |
920 | 0 | _ | |0 I:(DE-He78)A420-20160331 |k A420 |l Personalisierte Medizinische Onkologie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)A420-20160331 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a APC |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|