001     302116
005     20250724114202.0
024 7 _ |a 10.1200/PO-24-00847
|2 doi
024 7 _ |a pmid:40526877
|2 pmid
037 _ _ |a DKFZ-2025-01248
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ziegler, Martin
|0 P:(DE-He78)62a3cc13c7db450aa0e711ce99b43d7b
|b 0
|e First author
|u dkfz
245 _ _ |a Functional Characterization of Variants of Unknown Significance of Fibroblast Growth Factor Receptors 1-4 and Comparison With AI Model-Based Prediction.
260 _ _ |a Alexandria, VA
|c 2025
|b American Society of Clinical Oncology
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750252938_1996
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A420#LA:A420#
520 _ _ |a Fibroblast growth factor receptors (FGFRs; FGFR1, FGFR2, FGFR3, FGFR4) are frequently mutated oncogenes in solid cancers. The oncogenic potential of FGFR rearrangements and few hotspot point mutations is well established, but the majority of variants resulting from point mutations especially outside of the tyrosine kinase domain are currently considered variants of unknown significance (VUS).Recurrent nonkinase domain FGFR VUS variants were collected from the Catalog of Somatic Mutations in Cancer and their oncogenic potential was assessed in vitro by different functional assays. We compiled published clinical and preclinical data on FGFR variants and compared the data with results from our functional assays and pathogenicity predictions of state-of-the-art artificial intelligence (AI) models.We identified 12 novel FGFR extracellular small variants with potential driver function. Comparison of clinical and preclinical data on FGFR variants with pathogenicity predictions of state-of-the-art AI models showed limited usefulness of the AI predictions. Sensitivity profiles of activating FGFR variants to targeted inhibitors were recorded and showed good targetability of FGFR nonkinase domain variants.The collected results extend the spectrum of suitable FGFR variants for potential treatment with FGFR inhibitors in the context of clinical trials and beyond. Current AI models for variant pathogenicity prediction require further refinement for use in oncogenic decision making.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Receptors, Fibroblast Growth Factor
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Artificial Intelligence
|2 MeSH
650 _ 2 |a Neoplasms: genetics
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Receptors, Fibroblast Growth Factor: genetics
|2 MeSH
700 1 _ |a Khoury, Nadira
|0 P:(DE-He78)c8bbc9f9a9fd5dc18d7c0a975e4c5198
|b 1
|u dkfz
700 1 _ |a Hommerich, Louisa Maxine
|0 P:(DE-He78)27d7227a7033caf8638cc763819061a1
|b 2
|u dkfz
700 1 _ |a Adler, Heike
|0 P:(DE-He78)59f2ca4f23f7a537baf49bdfede6006f
|b 3
|u dkfz
700 1 _ |a Loges, Sonja
|0 P:(DE-He78)1eee9e84c0f8c90a97fe40b6e8252a23
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1200/PO-24-00847
|g Vol. 9, no. 9, p. e2400847
|0 PERI:(DE-600)2964799-X
|n 9
|p e2400847
|t JCO precision oncology
|v 9
|y 2025
|x 2473-4284
909 C O |o oai:inrepo02.dkfz.de:302116
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)62a3cc13c7db450aa0e711ce99b43d7b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)c8bbc9f9a9fd5dc18d7c0a975e4c5198
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)27d7227a7033caf8638cc763819061a1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)59f2ca4f23f7a537baf49bdfede6006f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)1eee9e84c0f8c90a97fe40b6e8252a23
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JCO PRECIS ONCOL : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-02
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 2 _ |0 I:(DE-He78)A420-20160331
|k A420
|l Personalisierte Medizinische Onkologie
|x 0
920 1 _ |0 I:(DE-He78)A420-20160331
|k A420
|l Personalisierte Medizinische Onkologie
|x 0
920 0 _ |0 I:(DE-He78)A420-20160331
|k A420
|l Personalisierte Medizinische Onkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A420-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21