000302139 001__ 302139
000302139 005__ 20250625113753.0
000302139 0247_ $$2doi$$a10.1002/nbm.70080
000302139 0247_ $$2pmid$$apmid:40533359
000302139 0247_ $$2pmc$$apmc:PMC12176530
000302139 0247_ $$2ISSN$$a0952-3480
000302139 0247_ $$2ISSN$$a1099-1492
000302139 037__ $$aDKFZ-2025-01257
000302139 041__ $$aEnglish
000302139 082__ $$a610
000302139 1001_ $$00009-0001-1956-3757$$aLutz, Max$$b0
000302139 245__ $$aAccurate MRF-Based 3D Multi-Channel B1 + Mapping in the Human Body at 7 T.
000302139 260__ $$aNew York, NY$$bWiley$$c2025
000302139 3367_ $$2DRIVER$$aarticle
000302139 3367_ $$2DataCite$$aOutput Types/Journal article
000302139 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1750760481_16805
000302139 3367_ $$2BibTeX$$aARTICLE
000302139 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000302139 3367_ $$00$$2EndNote$$aJournal Article
000302139 500__ $$a#LA:E020#
000302139 520__ $$aThis work proposes a 3D multi-transmit channel B1 + mapping approach based on magnetic resonance fingerprinting (MRF) for the human abdomen at 7 T. A stack-of-stars acquisition is employed to achieve motion-robust 3D encoding, along with a hybrid method where transmit (Tx) channel-wise B1 + information is obtained through low flip angle GRE images. B1 + mapping at ultra-high field (UHF) in the human abdomen is particularly challenging due to the large dynamic range of B1 +, the extensive field of view (FOV), and the effects of respiratory motion. Few methods have been proposed to address these challenges, with a significant limitation being the relatively low RF power available at UHF, especially for pTx systems with a 8 × 1 kW power configuration. This limitation makes it difficult to achieve FAs greater than 30° in central body regions, which are required for accurate results with classical methods. In contrast, Tx channel-combined MRF-based B1 + mapping has been validated as accurate for FAs greater than 6°, offering improved accuracy at low FAs. Here, two Tx channel-combined MRF-based B1 + maps (B1-MRF) are acquired using two tailored complementary phase shims to obtain absolute B1 + information across the entire FOV. The 3D hybrid approach was validated against a 2D reference using phantoms and in vivo free-breathing scans in three subjects with varying BMIs, where only one Tx channel was active at a time. The comparison showed strong agreement, with the 3D hybrid acquisition demonstrating improved performance in regions affected by flow, low FAs, or low signal-to-noise ratio compared to the 2D implementation. The higher accuracy and level of detail provided by the proposed method, in contrast to existing methods, are particularly relevant for several applications, including the validation of faster approaches, validation of electromagnetic simulations (which are safety-critical), and the creation of B1 + map libraries for applications such as AI-based B1 + mapping or universal pulse calculations.
000302139 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000302139 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000302139 650_7 $$2Other$$a7 Tesla
000302139 650_7 $$2Other$$aB1+ mapping
000302139 650_7 $$2Other$$aMRF
000302139 650_7 $$2Other$$abody MRI
000302139 650_7 $$2Other$$aultrahigh field MRI
000302139 650_2 $$2MeSH$$aHumans
000302139 650_2 $$2MeSH$$aImaging, Three-Dimensional
000302139 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000302139 650_2 $$2MeSH$$aPhantoms, Imaging
000302139 650_2 $$2MeSH$$aAdult
000302139 650_2 $$2MeSH$$aMale
000302139 650_2 $$2MeSH$$aFemale
000302139 7001_ $$aFlassbeck, Sebastian$$b1
000302139 7001_ $$00000-0003-3618-9610$$aAigner, Christoph Stefan$$b2
000302139 7001_ $$00000-0001-9453-8992$$aKrueger, Felix$$b3
000302139 7001_ $$00000-0003-1310-2631$$aSchaeffter, Tobias$$b4
000302139 7001_ $$0P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aSchmitter, Sebastian$$b5$$eLast author$$udkfz
000302139 773__ $$0PERI:(DE-600)2002003-X$$a10.1002/nbm.70080$$gVol. 38, no. 8, p. e70080$$n8$$pe70080$$tNMR in biomedicine$$v38$$x0952-3480$$y2025
000302139 909CO $$ooai:inrepo02.dkfz.de:302139$$pVDB
000302139 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000302139 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000302139 9141_ $$y2025
000302139 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-12$$wger
000302139 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-12$$wger
000302139 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-12
000302139 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-12
000302139 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-12
000302139 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-12
000302139 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-12
000302139 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-12
000302139 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-12
000302139 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNMR BIOMED : 2022$$d2024-12-12
000302139 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-12
000302139 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000302139 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000302139 980__ $$ajournal
000302139 980__ $$aVDB
000302139 980__ $$aI:(DE-He78)E020-20160331
000302139 980__ $$aUNRESTRICTED