001     302157
005     20250626113802.0
024 7 _ |a 10.1186/s40478-025-02049-1
|2 doi
024 7 _ |a pmid:40556027
|2 pmid
037 _ _ |a DKFZ-2025-01275
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Thompson, Dean
|b 0
245 _ _ |a Robust molecular subgrouping and reference-free aneuploidy detection in medulloblastoma using low-depth whole genome bisulfite sequencing.
260 _ _ |a London
|c 2025
|b Biomed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750917117_330
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Medulloblastoma comprises four principal molecular disease groups and their component subgroups, each with distinct molecular and clinical features. Group assignment is currently achieved diagnostically using Illumina DNA methylation microarray. Whole-genome sequencing (WGS) capacity is rapidly expanding in the clinical setting and the development of platform-independent, sequence-based assays of molecular group offers significant potential. Specifically, whole-genome bisulfite sequencing (WGBS) enables assessment of genome-wide methylation status at single-base resolution, however its routine application has been limited by high DNA input requirements, cost, and a lack of pipelines tailored to more rapidly-acquired and cost-effective low-depth (< 10x) sequencing data. We utilised WGBS data for 69 medulloblastomas, comprising 35 in-house low-depth (~ 10x) and 34 publicly available high-depth (~ 30x) samples, alongside cerebellar controls (n = 8), all with matched DNA methylation microarray data. We assessed quality (QC) and imputation approaches using low-pass WGBS data, assessed inter-platform correlation and identified molecular groups and subgroups by directly integrating matched/associated loci from WGBS sample data with the MNP classifier probeset. We further assessed and optimised reference-free aneuploidy detection using low-pass WGBS and assessed concordance with microarray-derived calls. We developed and optimised pipelines for processing, QC, and analysis of low-pass WGBS data, suitable for routine molecular subgrouping and reference-free aneuploidy assessment. We demonstrate that low-pass WGBS data can (i) be integrated into existing array-trained models with high assignment probabilities for both principal molecular groups (97% concordance) and molecular subgroups (94.2% concordance), and (ii) detect clinically relevant focal copy number changes, including SNCAIP, with greater sensitivity than microarray approaches. Low-pass WGBS performs equivalently to array-based methods at comparable cost. Finally, its ascertainment of the full methylome enables elucidation of additional biological complexity and inter-tumoural heterogeneity that has hitherto been inaccessible. These findings provide proof-of-concept for clinical adoption of low-pass WGBS, applied using standard WGS technology.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Aneuploidy
|2 Other
650 _ 7 |a Classification
|2 Other
650 _ 7 |a Low-pass
|2 Other
650 _ 7 |a Medulloblastoma
|2 Other
650 _ 7 |a Methylation
|2 Other
650 _ 7 |a Microarray
|2 Other
650 _ 7 |a Sequencing
|2 Other
650 _ 7 |a Subgrouping
|2 Other
650 _ 7 |a WGBS
|2 Other
650 _ 7 |a Sulfites
|2 NLM Chemicals
650 _ 7 |a hydrogen sulfite
|0 OJ9787WBLU
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Medulloblastoma: genetics
|2 MeSH
650 _ 2 |a Medulloblastoma: classification
|2 MeSH
650 _ 2 |a Medulloblastoma: diagnosis
|2 MeSH
650 _ 2 |a Cerebellar Neoplasms: genetics
|2 MeSH
650 _ 2 |a Cerebellar Neoplasms: classification
|2 MeSH
650 _ 2 |a Cerebellar Neoplasms: diagnosis
|2 MeSH
650 _ 2 |a Whole Genome Sequencing: methods
|2 MeSH
650 _ 2 |a DNA Methylation: genetics
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Aneuploidy
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Sulfites
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Child, Preschool
|2 MeSH
700 1 _ |a Castle, Jemma
|b 1
700 1 _ |a Sill, Martin
|0 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
|b 2
|u dkfz
700 1 _ |a Pfister, Stefan M
|0 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
|b 3
|u dkfz
700 1 _ |a Bailey, Simon
|b 4
700 1 _ |a Hicks, Debbie
|b 5
700 1 _ |a Clifford, Steven C
|b 6
700 1 _ |a Schwalbe, Edward C
|b 7
773 _ _ |a 10.1186/s40478-025-02049-1
|g Vol. 13, no. 1, p. 132
|0 PERI:(DE-600)2715589-4
|n 1
|p 132
|t Acta Neuropathologica Communications
|v 13
|y 2025
|x 2051-5960
909 C O |o oai:inrepo02.dkfz.de:302157
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)45440b44791309bd4b7dbb4f73333f9b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)f746aa965c4e1af518b016de3aaff5d9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:32:50Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:32:50Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:32:50Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA NEUROPATHOL COM : 2022
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21