000302160 001__ 302160
000302160 005__ 20250626113803.0
000302160 0247_ $$2doi$$a10.1016/j.ejmp.2025.105032
000302160 0247_ $$2pmid$$apmid:40554908
000302160 0247_ $$2ISSN$$a1120-1797
000302160 0247_ $$2ISSN$$a1724-191X
000302160 037__ $$aDKFZ-2025-01278
000302160 041__ $$aEnglish
000302160 082__ $$a610
000302160 1001_ $$aSchneider, Frank$$b0
000302160 245__ $$aRapid and reversible adaptation of a clinical linear accelerator for electron FLASH radiotherapy.
000302160 260__ $$aAmsterdam$$bElsevier$$c2025
000302160 3367_ $$2DRIVER$$aarticle
000302160 3367_ $$2DataCite$$aOutput Types/Journal article
000302160 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1750918585_328
000302160 3367_ $$2BibTeX$$aARTICLE
000302160 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000302160 3367_ $$00$$2EndNote$$aJournal Article
000302160 520__ $$aThe aim of this work was to establish a procedure that allows the conversion of a standard clinical LINAC into a 'FLASH' LINAC capable of delivering ultra-high dose rates above 40 Gy/s, with minimal, fully reversible modifications to the device. A dosimetric characterization of the resulting treatment beam is presented.A LINAC was modified to emit a 10 MeV electron FLASH beam. Modifications included the integration of a pulse control unit which consisted out of a scintillation detector and a transistor circuit. Beam parameters were optimized to maximize dose output. Beam characterization measurements were performed with different detectors in water: ionization chamber, diamond detector, radiographic films and scintillation detector. The resulting doses per pulse (DPP) and dose rates at different source-surface-distances (SSD) as well as the output reproducibility were determined. The beam was characterized with depth dose curves and lateral profiles.Conversion of a LINAC to FLASH mode was feasible in less than 30 min. Output was between DPPSSD=56cm = 1.69 ± 0.02 Gy and DPPSSD=100cm = 0.53 ± 0.01 Gy or dose rates between 676 ± 8 Gy/s and 213 ± 4 Gy/s. Reproducibility of DPP was better than 0.8 %. FLASH depth dose curves showed a higher range (R80 = 39.8 mm vs. 34.6 mm) and lateral beam profiles had a reduced flatness (from 5.5 % to 12.7 %) at SSD = 56 cm.We present a fully reversible conversion method requiring minimal modifications to a LINAC to produce electron FLASH beams. The achieved DPP and mean dose rates demonstrated high reproducibility, meeting criteria for FLASH applications, and markedly simplifying access to this technology for broader implementation.
000302160 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000302160 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000302160 650_7 $$2Other$$aDosimetry
000302160 650_7 $$2Other$$aElectron beam
000302160 650_7 $$2Other$$aFLASH
000302160 650_7 $$2Other$$aLINAC
000302160 650_7 $$2Other$$aUltra-high dose rate
000302160 7001_ $$aBauer, Cornelius J$$b1
000302160 7001_ $$aGöbel, Ida D$$b2
000302160 7001_ $$0P:(DE-He78)4babd30550790cd4dde217e990df5dcd$$aKing, Clarence$$b3$$udkfz
000302160 7001_ $$aSpadea, Maria Francesca$$b4
000302160 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b5$$udkfz
000302160 7001_ $$aGiordano, Frank A$$b6
000302160 7001_ $$aFleckenstein, Jens$$b7
000302160 773__ $$0PERI:(DE-600)2110535-2$$a10.1016/j.ejmp.2025.105032$$gVol. 136, p. 105032 -$$p105032$$tPhysica medica$$v136$$x1120-1797$$y2025
000302160 909CO $$ooai:inrepo02.dkfz.de:302160$$pVDB
000302160 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4babd30550790cd4dde217e990df5dcd$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000302160 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000302160 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000302160 9141_ $$y2025
000302160 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000302160 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MEDICA : 2022$$d2025-01-02
000302160 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000302160 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000302160 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000302160 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000302160 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000302160 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000302160 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000302160 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-02
000302160 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lMed. Physik in der Radioonkologie$$x0
000302160 980__ $$ajournal
000302160 980__ $$aVDB
000302160 980__ $$aI:(DE-He78)E041-20160331
000302160 980__ $$aUNRESTRICTED