001     302263
005     20250629021242.0
024 7 _ |a 10.1038/s41467-025-60910-2
|2 doi
024 7 _ |a pmid:40562785
|2 pmid
024 7 _ |a altmetric:178346734
|2 altmetric
037 _ _ |a DKFZ-2025-01289
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Hasan, Sana S
|b 0
245 _ _ |a Obesity drives depot-specific vascular remodeling in male white adipose tissue.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1750941936_1470
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Division Vascular Signaling and Cancer
520 _ _ |a Obesity-driven pathological expansion of white adipose tissue (WAT) is a key driver of endothelial dysfunction. However, early vascular alterations associated with over-nutrition also serve to exacerbate WAT dysfunction. Here, we conduct a single-cell transcriptomic analysis of WAT endothelium to delineate endothelial heterogeneity and elucidate vascular alterations and its consequence in a male murine model of obesity. We demarcate depot-specific differences in subcutaneous (sWAT) and visceral WAT (vWAT) endothelium through in sillico analysis and further corroboration of our findings. Moreover, we identify a sWAT-specific fenestrated endothelial cell (EC) subtype, which declines in obese conditions. Utilizing systemic anti-VEGFA blockade and genetic Vegfa manipulation, we demonstrate that VEGFA is necessary for maintaining fenestration in sWAT. Additionally, we detect this fenestrated EC subtype in male human WAT, which undergoes reduction in individuals with obesity. Collectively, this atlas serves as a valuable tool for future studies to decipher the functional significance of different WAT EC subtypes.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Vascular Endothelial Growth Factor A
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Obesity: metabolism
|2 MeSH
650 _ 2 |a Obesity: pathology
|2 MeSH
650 _ 2 |a Obesity: genetics
|2 MeSH
650 _ 2 |a Adipose Tissue, White: metabolism
|2 MeSH
650 _ 2 |a Adipose Tissue, White: pathology
|2 MeSH
650 _ 2 |a Adipose Tissue, White: blood supply
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Vascular Remodeling: genetics
|2 MeSH
650 _ 2 |a Vascular Remodeling: physiology
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Endothelial Cells: metabolism
|2 MeSH
650 _ 2 |a Endothelial Cells: pathology
|2 MeSH
650 _ 2 |a Vascular Endothelial Growth Factor A: metabolism
|2 MeSH
650 _ 2 |a Vascular Endothelial Growth Factor A: genetics
|2 MeSH
650 _ 2 |a Vascular Endothelial Growth Factor A: antagonists & inhibitors
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Subcutaneous Fat: metabolism
|2 MeSH
650 _ 2 |a Subcutaneous Fat: pathology
|2 MeSH
650 _ 2 |a Subcutaneous Fat: blood supply
|2 MeSH
650 _ 2 |a Single-Cell Analysis
|2 MeSH
650 _ 2 |a Disease Models, Animal
|2 MeSH
650 _ 2 |a Intra-Abdominal Fat: metabolism
|2 MeSH
650 _ 2 |a Endothelium, Vascular: metabolism
|2 MeSH
650 _ 2 |a Endothelium, Vascular: pathology
|2 MeSH
700 1 _ |a John, David
|0 0000-0003-3217-5449
|b 1
700 1 _ |a Rudnicki, Martina
|0 0000-0002-7863-5044
|b 2
700 1 _ |a AlZaim, Ibrahim
|0 0000-0001-6677-4365
|b 3
700 1 _ |a Eberhard, Daniel
|b 4
700 1 _ |a Moll, Iris
|0 P:(DE-He78)68d90eb013f51c689f9ebea83a920858
|b 5
700 1 _ |a Taylor, Jacqueline
|0 P:(DE-He78)df29352b13734f9202e3b900aeef7754
|b 6
700 1 _ |a Klein, Christian
|0 0000-0001-7594-7280
|b 7
700 1 _ |a von Heesen, Maximilian
|b 8
700 1 _ |a Conradi, Lena-Christin
|b 9
700 1 _ |a Adams, Ralf H
|0 0000-0003-3031-7677
|b 10
700 1 _ |a Lammert, Eckhard
|0 0000-0002-9844-8000
|b 11
700 1 _ |a Kalucka, Joanna
|0 0000-0003-4887-7672
|b 12
700 1 _ |a Ruhrberg, Christiana
|0 0000-0002-3212-9381
|b 13
700 1 _ |a Dimmeler, Stefanie
|0 0000-0002-1045-2436
|b 14
700 1 _ |a Fischer, Andreas
|b 15
773 _ _ |a 10.1038/s41467-025-60910-2
|g Vol. 16, no. 1, p. 5392
|0 PERI:(DE-600)2553671-0
|n 1
|p 5392
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
909 C O |o oai:inrepo02.dkfz.de:302263
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)68d90eb013f51c689f9ebea83a920858
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)df29352b13734f9202e3b900aeef7754
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
920 1 _ |0 I:(DE-He78)A270-20160331
|k A270
|l Vaskuläre Signaltransduktion und Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A270-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21