000302266 001__ 302266
000302266 005__ 20251203120034.0
000302266 0247_ $$2doi$$a10.1088/1361-6560/ade841
000302266 0247_ $$2pmid$$apmid:40562074
000302266 0247_ $$2ISSN$$a0031-9155
000302266 0247_ $$2ISSN$$a1361-6560
000302266 0247_ $$2altmetric$$aaltmetric:179477384
000302266 037__ $$aDKFZ-2025-01292
000302266 041__ $$aEnglish
000302266 082__ $$a530
000302266 1001_ $$00000-0003-0229-2601$$aBorys, Damian$$b0
000302266 245__ $$aGPU-accelerated FREDopt package for simultaneous dose and LETdproton radiotherapy plan optimization via superiorization methods.
000302266 260__ $$aBristol$$bIOP Publ.$$c2025
000302266 3367_ $$2DRIVER$$aarticle
000302266 3367_ $$2DataCite$$aOutput Types/Journal article
000302266 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1764759615_1331669
000302266 3367_ $$2BibTeX$$aARTICLE
000302266 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000302266 3367_ $$00$$2EndNote$$aJournal Article
000302266 500__ $$a70(15), 155011 / #DKFZ-MOST-Ca216#
000302266 520__ $$aThis study presents FREDopt, a newly developed GPU-accelerated open-source optimization software for simultaneous proton dose and dose-averaged LET (LETd) optimization in IMPT treatment planning. FREDopt was implemented entirely in Python, leveraging CuPy for GPU acceleration and incorporating fast Monte Carlo (MC) simulations from the FRED code. The treatment plan optimization workflow includes pre-optimization and optimization, the latter equipped with a novel superiorization of feasibility-seeking algorithms. Feasibility-seeking requires finding a point that satisfies prescribed constraints. Superiorization interlaces computational perturbations into iterative feasibility-seeking steps to steer them toward a superior feasible point, replacing the need for costly full-fledged constrained optimization. The method was validated on two treatment plans of patients treated in a clinical proton therapy center, with dose and LETd distributions compared before and after reoptimization. Simultaneous dose and LETd optimization using FREDopt led to a substantial reduction of LETd and (dose)×(LETd) in organs at risk (OARs) while preserving target dose conformity. Computational performance evaluation showed execution times of 14-50 minutes, depending on the algorithm and target volume size-satisfactory for clinical and research applications while enabling further development of the well-tested, documented open-source software.
000302266 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000302266 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000302266 650_7 $$2Other$$afeasibility seeking
000302266 650_7 $$2Other$$alinear energy transfer (LET)
000302266 650_7 $$2Other$$aproton therapy
000302266 650_7 $$2Other$$aradiation therapy
000302266 650_7 $$2Other$$asuperiorization
000302266 650_7 $$2Other$$atreatment plan optimization
000302266 7001_ $$00000-0002-7416-5145$$aGajewski, Jan$$b1
000302266 7001_ $$0P:(DE-He78)49b8eff4c466e1497028f0ad44747355$$aBecher, Tobias$$b2$$udkfz
000302266 7001_ $$00000-0003-2247-818X$$aCensor, Yair$$b3
000302266 7001_ $$00000-0002-0919-9859$$aKopec, Renata$$b4
000302266 7001_ $$00000-0003-4102-858X$$aRydygier, Marzena$$b5
000302266 7001_ $$aSchiavi, Angelo$$b6
000302266 7001_ $$00000-0001-6322-0615$$aSkóra, Tomasz$$b7
000302266 7001_ $$00009-0002-6811-3100$$aSpaleniak, Anna$$b8
000302266 7001_ $$0P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aWahl, Niklas$$b9$$udkfz
000302266 7001_ $$00000-0002-7848-1145$$aWochnik, Agnieszka$$b10
000302266 7001_ $$00000-0002-5815-4606$$aRucinski, Antoni$$b11
000302266 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ade841$$n15$$p155011$$tPhysics in medicine and biology$$v70$$x0031-9155$$y2025
000302266 909CO $$ooai:inrepo02.dkfz.de:302266$$pVDB
000302266 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)49b8eff4c466e1497028f0ad44747355$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000302266 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfd5aaf608015baaaed0a15b473f1336$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000302266 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000302266 9141_ $$y2025
000302266 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-27$$wger
000302266 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-27
000302266 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
000302266 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000302266 980__ $$ajournal
000302266 980__ $$aVDB
000302266 980__ $$aI:(DE-He78)E040-20160331
000302266 980__ $$aUNRESTRICTED