000302295 001__ 302295
000302295 005__ 20250628200202.0
000302295 0247_ $$2doi$$a10.1016/j.ijrobp.2025.04.004
000302295 0247_ $$2pmid$$apmid:40239820
000302295 0247_ $$2pmc$$apmc:PMC12202161
000302295 0247_ $$2ISSN$$a0360-3016
000302295 0247_ $$2ISSN$$a1879-355X
000302295 037__ $$aDKFZ-2025-01314
000302295 041__ $$aEnglish
000302295 082__ $$a610
000302295 1001_ $$aMeyer, Sebastian$$b0
000302295 245__ $$aDeformable Image Registration Uncertainty-Encompassing Dose Accumulation for Adaptive Radiation Therapy.
000302295 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
000302295 3367_ $$2DRIVER$$aarticle
000302295 3367_ $$2DataCite$$aOutput Types/Journal article
000302295 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751029826_11140
000302295 3367_ $$2BibTeX$$aARTICLE
000302295 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000302295 3367_ $$00$$2EndNote$$aJournal Article
000302295 520__ $$aDeformable image registration (DIR) represents an inherently ill-posed problem, and its quality highly depends on the algorithm and user input, which can severely affect its applications in adaptive radiation therapy. We propose an automated framework for integrating DIR uncertainty into dose accumulation.A hyperparameter perturbation approach was applied to estimate an ensemble of deformation vector fields for a given computed tomography (CT) to cone beam CT (CBCT) DIR. For each voxel, a principal component analysis was performed on the distribution of homologous points to construct voxel-specific DIR uncertainty confidence ellipsoids. During the resampling process for dose mapping, the complete dose within each ellipsoid was evaluated via interpolation to estimate the upper and lower dose limits for the particular voxel. We applied the proposed framework in a retrospective dose accumulation study of 20 patients with lung cancer who underwent image guided radiation therapy with weekly CBCTs.The average computational time was around 30 minutes, making the approach clinically feasible for automated offline evaluations. The uncertainty (ie, largest ellipsoid semiaxis length) for the fifth week CBCT DIR was 3.8 ± 1.8, 2.5 ± 0.7, 1.5 ± 0.4, 3.2 ± 1.3, and 4.5 ± 1.8 mm for the gross tumor volume, esophagus, spinal cord, lungs, and heart, respectively. Confidence ellipsoids were markedly elongated, with the largest semiaxis 5.5 and 2.5 times longer than the other axes. The dosimetric uncertainties were mainly within 4 Gy but exhibited significant spatial variation because of the interplay between dose gradient and DIR uncertainty. When DIR uncertainty was considered in dose accumulation, 3 cases exceeded institutional limits for dose-volume histogram metrics, highlighting the importance of considering the inherent uncertainty of DIR.This framework has the potential to facilitate the clinical implementation of dose accumulation, which can improve clinical decision-making in adaptive radiation therapy and provide more personalized radiation therapy treatments.
000302295 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000302295 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000302295 650_2 $$2MeSH$$aHumans
000302295 650_2 $$2MeSH$$aCone-Beam Computed Tomography: methods
000302295 650_2 $$2MeSH$$aUncertainty
000302295 650_2 $$2MeSH$$aRadiotherapy, Image-Guided: methods
000302295 650_2 $$2MeSH$$aLung Neoplasms: radiotherapy
000302295 650_2 $$2MeSH$$aLung Neoplasms: diagnostic imaging
000302295 650_2 $$2MeSH$$aRadiotherapy Dosage
000302295 650_2 $$2MeSH$$aRetrospective Studies
000302295 650_2 $$2MeSH$$aAlgorithms
000302295 650_2 $$2MeSH$$aRadiotherapy Planning, Computer-Assisted: methods
000302295 650_2 $$2MeSH$$aOrgans at Risk: diagnostic imaging
000302295 7001_ $$aHu, Yu-Chi$$b1
000302295 7001_ $$0P:(DE-HGF)0$$aRimner, Andreas$$b2
000302295 7001_ $$aMechalakos, James$$b3
000302295 7001_ $$aCerviño, Laura$$b4
000302295 7001_ $$aZhang, Pengpeng$$b5
000302295 773__ $$0PERI:(DE-600)1500486-7$$a10.1016/j.ijrobp.2025.04.004$$gVol. 122, no. 4, p. 818 - 826$$n4$$p818 - 826$$tInternational journal of radiation oncology, biology, physics$$v122$$x0360-3016$$y2025
000302295 909CO $$ooai:inrepo02.dkfz.de:302295$$pVDB
000302295 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000302295 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000302295 9141_ $$y2025
000302295 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-31$$wger
000302295 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J RADIAT ONCOL : 2022$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-31
000302295 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINT J RADIAT ONCOL : 2022$$d2024-12-31
000302295 9201_ $$0I:(DE-He78)FR01-20160331$$kFR01$$lDKTK Koordinierungsstelle Freiburg$$x0
000302295 980__ $$ajournal
000302295 980__ $$aVDB
000302295 980__ $$aI:(DE-He78)FR01-20160331
000302295 980__ $$aUNRESTRICTED