001     302323
005     20250706021316.0
024 7 _ |a 10.1038/s41467-025-61222-1
|2 doi
024 7 _ |a pmid:40579412
|2 pmid
024 7 _ |a altmetric:178463040
|2 altmetric
037 _ _ |a DKFZ-2025-01318
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Costea, Julia
|0 0000-0001-7942-4495
|b 0
245 _ _ |a Role of stem-like cells in chemotherapy resistance and relapse in pediatric T-cell acute lymphoblastic leukemia.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751273508_21722
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:B480#
520 _ _ |a T-ALL relapses are characterized by chemotherapy resistance, cellular diversity and dismal outcome. To gain a deeper understanding of the mechanisms underlying relapses, we conduct single-cell RNA sequencing on 13 matched pediatric T-ALL patient-derived samples at diagnosis and relapse, along with samples derived from 5 non-relapsing patients collected at diagnosis. This comprehensive longitudinal single-cell study in T-ALL reveals significant transcriptomic diversity. Notably, 11 out of 18 samples exhibit a subpopulation of T-ALL cells with stem-like features characterized by a common set of active regulons, expression patterns and splice isoforms. This subpopulation, accounting for a small proportion of leukemia cells at diagnosis, expands substantially at relapse, indicating resistance to therapy. Strikingly, increased stemness at diagnosis is associated with higher risk of treatment induction failure. Chemotherapy resistance is validated through in-vitro and in-vivo drug testing. Thus, we report the discovery of treatment-resistant stem-like cells in T-ALL, underscoring the potential for devising future therapeutic strategies targeting stemness-related pathways.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Drug Resistance, Neoplasm: genetics
|2 MeSH
650 _ 2 |a Precursor T-Cell Lymphoblastic Leukemia-Lymphoma: drug therapy
|2 MeSH
650 _ 2 |a Precursor T-Cell Lymphoblastic Leukemia-Lymphoma: genetics
|2 MeSH
650 _ 2 |a Precursor T-Cell Lymphoblastic Leukemia-Lymphoma: pathology
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Neoplastic Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Neoplastic Stem Cells: pathology
|2 MeSH
650 _ 2 |a Neoplastic Stem Cells: drug effects
|2 MeSH
650 _ 2 |a Single-Cell Analysis
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Child, Preschool
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Neoplasm Recurrence, Local: genetics
|2 MeSH
650 _ 2 |a Recurrence
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Cell Line, Tumor
|2 MeSH
650 _ 2 |a Gene Expression Regulation, Leukemic
|2 MeSH
700 1 _ |a Rauwolf, Kerstin K
|b 1
700 1 _ |a Zafferani, Pietro
|0 P:(DE-He78)c06a4480eaf1e3373860bfbdf79fb61f
|b 2
|u dkfz
700 1 _ |a Rausch, Tobias
|b 3
700 1 _ |a Mathioudaki, Anna
|0 P:(DE-He78)fc0c97c9d01deff15d0a1f0cb8402459
|b 4
|u dkfz
700 1 _ |a Zaugg, Judith
|0 0000-0001-8324-4040
|b 5
700 1 _ |a Schrappe, Martin
|b 6
700 1 _ |a Eckert, Cornelia
|0 P:(DE-He78)fd9d6272a48791a31f40a854585db572
|b 7
700 1 _ |a Escherich, Gabriele
|b 8
700 1 _ |a Bourquin, Jean P
|0 0000-0001-6571-6227
|b 9
700 1 _ |a Bornhauser, Beat
|0 0000-0003-2890-3191
|b 10
700 1 _ |a Kulozik, Andreas
|0 P:(DE-He78)ca062b8db1ee864e03f0a92897728df3
|b 11
|u dkfz
700 1 _ |a Korbel, Jan
|0 P:(DE-He78)372b77c2acf8604690a6a325a4e89287
|b 12
|e Last author
|u dkfz
773 _ _ |a 10.1038/s41467-025-61222-1
|g Vol. 16, no. 1, p. 5413
|0 PERI:(DE-600)2553671-0
|n 1
|p 5413
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
909 C O |o oai:inrepo02.dkfz.de:302323
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)c06a4480eaf1e3373860bfbdf79fb61f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)fc0c97c9d01deff15d0a1f0cb8402459
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)fd9d6272a48791a31f40a854585db572
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)ca062b8db1ee864e03f0a92897728df3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)372b77c2acf8604690a6a325a4e89287
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
920 2 _ |0 I:(DE-He78)B480-20160331
|k B480
|l Mechanismen der genetischen Variation und Datenwissenschaft
|x 0
920 1 _ |0 I:(DE-He78)B270-20160331
|k B270
|l B270 Regulatorische Genomik und Evolution von Tumoren
|x 0
920 1 _ |0 I:(DE-He78)B450-20160331
|k B450
|l Künstl. Intelligenz in der Onkologie
|x 1
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 2
920 1 _ |0 I:(DE-He78)A400-20160331
|k A400
|l KKE Pädiatrische Leukämie
|x 3
920 1 _ |0 I:(DE-He78)B480-20160331
|k B480
|l Mechanismen der genetischen Variation und Datenwissenschaft
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B270-20160331
980 _ _ |a I:(DE-He78)B450-20160331
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a I:(DE-He78)A400-20160331
980 _ _ |a I:(DE-He78)B480-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21