001     302327
005     20250706021323.0
024 7 _ |a 10.1093/brain/awaf235
|2 doi
024 7 _ |a pmid:40577240
|2 pmid
024 7 _ |a 0006-8950
|2 ISSN
024 7 _ |a 1460-2156
|2 ISSN
024 7 _ |a altmetric:178233172
|2 altmetric
037 _ _ |a DKFZ-2025-01322
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a O'Brien, David
|b 0
245 _ _ |a Extreme exercise in males is linked to mTOR signalling and onset of amyotrophic lateral sclerosis.
260 _ _ |a Oxford
|c 2025
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751273436_21722
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a epub
520 _ _ |a Amyotrophic lateral sclerosis (ALS) is thought to be caused by interaction between genetic and environmental factors leading to motor neuron (MN) degeneration. Physical exercise has been linked to ALS but controversy remains. A key question is to determine which individuals might be at risk of exercise-associated ALS, because unnecessary avoidance of exercise could be harmful. We implemented complementary strategies including Mendelian randomization and multiple questionnaire-based measures of physical exercise in different cohorts. We include a prospective study in UK Biobank participants where we could test for a relationship between exercise and the timing of future ALS symptom onset. To interrogate the molecular basis of our observations we performed a genetic association study of 'extreme' exercise, equivalent to >6 hours of strenuous exercise or >12 hours of any leisure-time exercise per week. Our data suggest that the link between increased physical exercise and ALS is particularly important for males who perform the most activity; with no evidence of a link in females. We determined that extreme exercise in males is associated with loss-of-function genetic variants within a number of mammalian target of rapamycin (mTOR) signalling genes that are also differentially expressed in ALS spinal cord. Activity-induced mTOR signalling has been shown to selectively benefit MN. Therefore, our findings could imply that moderate exercise is neuroprotective via enhanced mTOR signalling, but extreme exercise in men is associated with neurotoxicity and ALS via a failure of this mechanism. There was no significant overlap between genes associated with extreme exercise and those associated with ALS risk, consistent with a true gene-environment interaction rather than a shared genetic basis. We are not yet able to make individual-level recommendations regarding exercise and risk of ALS, but our conclusions should focus future investigation.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Exercise
|2 Other
650 _ 7 |a amyotrophic lateral sclerosis (ALS)
|2 Other
650 _ 7 |a gene-environment interaction
|2 Other
650 _ 7 |a mammalian target of rapamycin (mTOR) signalling
|2 Other
700 1 _ |a Alhathli, Elham
|b 1
700 1 _ |a Harwood, Ceryl
|b 2
700 1 _ |a Bhattacharya, Debarati
|b 3
700 1 _ |a Gupta, Kriti
|b 4
700 1 _ |a Julian, Thomas
|b 5
700 1 _ |a Weinreich, Marcel
|0 P:(DE-He78)74b9c8e36d19d91fcd9485c70a038d13
|b 6
|u dkfz
700 1 _ |a West, Ryan J H
|0 0000-0001-9873-2258
|b 7
700 1 _ |a Wang, Dennis
|0 0000-0003-0068-1005
|b 8
700 1 _ |a Byrne, Ross P
|b 9
700 1 _ |a McLaughlin, Russell L
|0 0000-0003-3915-2135
|b 10
700 1 _ |a Wuu, Joanne
|b 11
700 1 _ |a Benatar, Michael
|0 0000-0003-4241-5135
|b 12
700 1 _ |a Cooper-Knock, Johnathan
|0 0000-0002-0873-8689
|b 13
700 1 _ |a Shaw, Pamela J
|0 0000-0002-8925-2567
|b 14
773 _ _ |a 10.1093/brain/awaf235
|g p. awaf235
|0 PERI:(DE-600)1474117-9
|p nn
|t Brain
|v nn
|y 2025
|x 0006-8950
909 C O |o oai:inrepo02.dkfz.de:302327
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)74b9c8e36d19d91fcd9485c70a038d13
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BRAIN : 2022
|d 2024-12-12
920 1 _ |0 I:(DE-He78)A230-20160331
|k A230
|l A230 Klinische Neurobiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A230-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21