001     302814
005     20250720021401.0
024 7 _ |a 10.1016/j.radonc.2025.111031
|2 doi
024 7 _ |a pmid:40618900
|2 pmid
024 7 _ |a 0167-8140
|2 ISSN
024 7 _ |a 1879-0887
|2 ISSN
024 7 _ |a altmetric:179096850
|2 altmetric
037 _ _ |a DKFZ-2025-01354
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Erdur, Ayhan Can
|b 0
245 _ _ |a Improving risk assessment of local failure in brain metastases patients using vision transformers - A multicentric development and validation study.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752657850_10334
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study investigates the use of Vision Transformers (ViTs) to predict Freedom from Local Failure (FFLF) in patients with brain metastases using pre-operative MRI scans. The goal is to develop a model that enhances risk stratification and informs personalized treatment strategies.Within the AURORA retrospective trial, patients (n = 352) who received surgical resection followed by post-operative stereotactic radiotherapy (SRT) were collected from seven hospitals. We trained our ViT for the direct image-to-risk task on T1-CE and FLAIR sequences and combined clinical features along the way. We employed segmentation-guided image modifications, model adaptations, and specialized patient sampling strategies during training. The model was evaluated with five-fold cross-validation and ensemble learning across all validation runs. An external, international test cohort (n = 99) within the dataset was used to assess the generalization capabilities of the model, and saliency maps were generated for explainability analysis.We achieved a competent C-Index score of 0.7982 on the test cohort, surpassing all clinical, CNN-based, and hybrid baselines. Kaplan-Meier analysis showed significant FFLF risk stratification. Saliency maps focusing on the BM core confirmed that model explanations aligned with expert observations.Our ViT-based model offers a potential for personalized treatment strategies and follow-up regimens in patients with brain metastases. It provides an alternative to radiomics as a robust, automated tool for clinical workflows, capable of improving patient outcomes through effective risk assessment and stratification.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Artificial Intelligence
|2 Other
650 _ 7 |a Brain metastases
|2 Other
650 _ 7 |a Stereotactic radiotherapy
|2 Other
650 _ 7 |a Vision Transformers
|2 Other
700 1 _ |a Scholz, Daniel
|b 1
700 1 _ |a Nguyen, Q Mai
|b 2
700 1 _ |a Buchner, Josef A
|b 3
700 1 _ |a Mayinger, Michael
|b 4
700 1 _ |a Christ, Sebastian M
|b 5
700 1 _ |a Brunner, Thomas B
|b 6
700 1 _ |a Wittig, Andrea
|b 7
700 1 _ |a Zimmer, Claus
|b 8
700 1 _ |a Meyer, Bernhard
|b 9
700 1 _ |a Guckenberger, Matthias
|b 10
700 1 _ |a Andratschke, Nicolaus
|b 11
700 1 _ |a El Shafie, Rami A
|b 12
700 1 _ |a Debus, J Urgen
|b 13
700 1 _ |a Rogers, Susanne
|b 14
700 1 _ |a Riesterer, Oliver
|b 15
700 1 _ |a Schulze, Katrin
|b 16
700 1 _ |a Feldmann, Horst J
|b 17
700 1 _ |a Blanck, Oliver
|b 18
700 1 _ |a Zamboglou, Constantinos
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Bilger-Z, Angelika
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Grosu, Anca L
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Wolff, Robert
|b 22
700 1 _ |a Eitz, Kerstin A
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Combs, Stephanie E
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Bernhardt, Denise
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Wiestler, Benedikt
|b 26
700 1 _ |a Rueckert, Daniel
|b 27
700 1 _ |a Peeken, Jan C
|0 P:(DE-HGF)0
|b 28
773 _ _ |a 10.1016/j.radonc.2025.111031
|g Vol. 210, p. 111031 -
|0 PERI:(DE-600)1500707-8
|p 111031
|t Radiotherapy and oncology
|v 210
|y 2025
|x 0167-8140
909 C O |o oai:inrepo02.dkfz.de:302814
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 19
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 21
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 24
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 25
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 28
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIOTHER ONCOL : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b RADIOTHER ONCOL : 2022
|d 2025-01-07
920 1 _ |0 I:(DE-He78)FR01-20160331
|k FR01
|l DKTK Koordinierungsstelle Freiburg
|x 0
920 1 _ |0 I:(DE-He78)MU01-20160331
|k MU01
|l DKTK Koordinierungsstelle München
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)FR01-20160331
980 _ _ |a I:(DE-He78)MU01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21