Home > Publications database > Improving risk assessment of local failure in brain metastases patients using vision transformers - A multicentric development and validation study. > print |
001 | 302814 | ||
005 | 20250720021401.0 | ||
024 | 7 | _ | |a 10.1016/j.radonc.2025.111031 |2 doi |
024 | 7 | _ | |a pmid:40618900 |2 pmid |
024 | 7 | _ | |a 0167-8140 |2 ISSN |
024 | 7 | _ | |a 1879-0887 |2 ISSN |
024 | 7 | _ | |a altmetric:179096850 |2 altmetric |
037 | _ | _ | |a DKFZ-2025-01354 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Erdur, Ayhan Can |b 0 |
245 | _ | _ | |a Improving risk assessment of local failure in brain metastases patients using vision transformers - A multicentric development and validation study. |
260 | _ | _ | |a Amsterdam [u.a.] |c 2025 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1752657850_10334 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a This study investigates the use of Vision Transformers (ViTs) to predict Freedom from Local Failure (FFLF) in patients with brain metastases using pre-operative MRI scans. The goal is to develop a model that enhances risk stratification and informs personalized treatment strategies.Within the AURORA retrospective trial, patients (n = 352) who received surgical resection followed by post-operative stereotactic radiotherapy (SRT) were collected from seven hospitals. We trained our ViT for the direct image-to-risk task on T1-CE and FLAIR sequences and combined clinical features along the way. We employed segmentation-guided image modifications, model adaptations, and specialized patient sampling strategies during training. The model was evaluated with five-fold cross-validation and ensemble learning across all validation runs. An external, international test cohort (n = 99) within the dataset was used to assess the generalization capabilities of the model, and saliency maps were generated for explainability analysis.We achieved a competent C-Index score of 0.7982 on the test cohort, surpassing all clinical, CNN-based, and hybrid baselines. Kaplan-Meier analysis showed significant FFLF risk stratification. Saliency maps focusing on the BM core confirmed that model explanations aligned with expert observations.Our ViT-based model offers a potential for personalized treatment strategies and follow-up regimens in patients with brain metastases. It provides an alternative to radiomics as a robust, automated tool for clinical workflows, capable of improving patient outcomes through effective risk assessment and stratification. |
536 | _ | _ | |a 899 - ohne Topic (POF4-899) |0 G:(DE-HGF)POF4-899 |c POF4-899 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Artificial Intelligence |2 Other |
650 | _ | 7 | |a Brain metastases |2 Other |
650 | _ | 7 | |a Stereotactic radiotherapy |2 Other |
650 | _ | 7 | |a Vision Transformers |2 Other |
700 | 1 | _ | |a Scholz, Daniel |b 1 |
700 | 1 | _ | |a Nguyen, Q Mai |b 2 |
700 | 1 | _ | |a Buchner, Josef A |b 3 |
700 | 1 | _ | |a Mayinger, Michael |b 4 |
700 | 1 | _ | |a Christ, Sebastian M |b 5 |
700 | 1 | _ | |a Brunner, Thomas B |b 6 |
700 | 1 | _ | |a Wittig, Andrea |b 7 |
700 | 1 | _ | |a Zimmer, Claus |b 8 |
700 | 1 | _ | |a Meyer, Bernhard |b 9 |
700 | 1 | _ | |a Guckenberger, Matthias |b 10 |
700 | 1 | _ | |a Andratschke, Nicolaus |b 11 |
700 | 1 | _ | |a El Shafie, Rami A |b 12 |
700 | 1 | _ | |a Debus, J Urgen |b 13 |
700 | 1 | _ | |a Rogers, Susanne |b 14 |
700 | 1 | _ | |a Riesterer, Oliver |b 15 |
700 | 1 | _ | |a Schulze, Katrin |b 16 |
700 | 1 | _ | |a Feldmann, Horst J |b 17 |
700 | 1 | _ | |a Blanck, Oliver |b 18 |
700 | 1 | _ | |a Zamboglou, Constantinos |0 P:(DE-HGF)0 |b 19 |
700 | 1 | _ | |a Bilger-Z, Angelika |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Grosu, Anca L |0 P:(DE-HGF)0 |b 21 |
700 | 1 | _ | |a Wolff, Robert |b 22 |
700 | 1 | _ | |a Eitz, Kerstin A |0 P:(DE-HGF)0 |b 23 |
700 | 1 | _ | |a Combs, Stephanie E |0 P:(DE-HGF)0 |b 24 |
700 | 1 | _ | |a Bernhardt, Denise |0 P:(DE-HGF)0 |b 25 |
700 | 1 | _ | |a Wiestler, Benedikt |b 26 |
700 | 1 | _ | |a Rueckert, Daniel |b 27 |
700 | 1 | _ | |a Peeken, Jan C |0 P:(DE-HGF)0 |b 28 |
773 | _ | _ | |a 10.1016/j.radonc.2025.111031 |g Vol. 210, p. 111031 - |0 PERI:(DE-600)1500707-8 |p 111031 |t Radiotherapy and oncology |v 210 |y 2025 |x 0167-8140 |
909 | C | O | |o oai:inrepo02.dkfz.de:302814 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 19 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 20 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 21 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 23 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 24 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 25 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 28 |6 P:(DE-HGF)0 |
913 | 1 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2025-01-07 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2025-01-07 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-07 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b RADIOTHER ONCOL : 2022 |d 2025-01-07 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2025-01-07 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2025-01-07 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b RADIOTHER ONCOL : 2022 |d 2025-01-07 |
920 | 1 | _ | |0 I:(DE-He78)FR01-20160331 |k FR01 |l DKTK Koordinierungsstelle Freiburg |x 0 |
920 | 1 | _ | |0 I:(DE-He78)MU01-20160331 |k MU01 |l DKTK Koordinierungsstelle München |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)FR01-20160331 |
980 | _ | _ | |a I:(DE-He78)MU01-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|