001     302832
005     20251006141214.0
024 7 _ |a 10.1016/j.acra.2025.06.034
|2 doi
024 7 _ |a pmid:40640054
|2 pmid
024 7 _ |a 1076-6332
|2 ISSN
024 7 _ |a 1878-4046
|2 ISSN
037 _ _ |a DKFZ-2025-01372
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Wennmann, Markus
|0 P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738
|b 0
|e First author
|u dkfz
245 _ _ |a Automated Detection of Focal Bone Marrow Lesions From MRI: A Multi-center Feasibility Study in Patients with Monoclonal Plasma Cell Disorders.
260 _ _ |a Philadelphia, PA [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1759752690_8194
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E010#LA:E010#LA:E230# / 2025 Oct;32(10):6012-6026
520 _ _ |a To train and test an AI-based algorithm for automated detection of focal bone marrow lesions (FL) from MRI.This retrospective feasibility study included 444 patients with monoclonal plasma cell disorders. For this feasibility study, only FLs in the left pelvis were included. Using the nnDetection framework, the algorithm was trained based on 334 patients with 494 FLs from center 1, and was tested on an internal test set (36 patients, 89 FLs, center 1) and a multicentric external test set (74 patients, 262 FLs, centers 2-11). Mean average precision (mAP), F1-score, sensitivity, positive predictive value (PPV), and Spearman correlation coefficient between automatically determined and actual number of FLs were calculated.On the internal/external test set, the algorithm achieved a mAP of 0.44/0.34, F1-Score of 0.54/0.44, sensitivity of 0.49/0.34, and a PPV of 0.61/0.61, respectively. In two subsets of the external multicentric test set with high imaging quality, the performance nearly matched that of the internal test set, with mAP of 0.45/0.41, F1-Score of 0.50/0.53, sensitivity of 0.44/0.43, and a PPV of 0.60/0.71, respectively. There was a significant correlation between the automatically determined and actual number of FLs on both the internal (r=0.51, p=0.001) and external multicentric test set (r=0.59, p<0.001).This study demonstrates that the automated detection of FLs from MRI, and thereby the automated assessment of the number of FLs, is feasible.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a AI
|2 Other
650 _ 7 |a Detection
|2 Other
650 _ 7 |a Focal lesions
|2 Other
650 _ 7 |a Monoclonal plasma cell disorders
|2 Other
650 _ 7 |a Multicenter
|2 Other
700 1 _ |a Kächele, Jessica
|0 P:(DE-He78)05779b8fc2a612fdf8364db690f3480c
|b 1
|u dkfz
700 1 _ |a von Salomon, Arvin
|0 P:(DE-He78)b05a293a4cd1e8f09cdbc953de8ed6d1
|b 2
|u dkfz
700 1 _ |a Nonnenmacher, Tobias
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Bujotzek, Markus
|0 P:(DE-He78)d52d4217d38d20b78d1bc8014e2b0c35
|b 4
|u dkfz
700 1 _ |a Xiao, Shuhan
|0 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
|b 5
|u dkfz
700 1 _ |a Martinez Mora, Andres
|0 P:(DE-He78)ec69b596ea6cd55401413c047f15db31
|b 6
|u dkfz
700 1 _ |a Hielscher, Thomas
|0 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
|b 7
|u dkfz
700 1 _ |a Hajiyianni, Marina
|b 8
700 1 _ |a Menis, Ekaterina
|b 9
700 1 _ |a Grözinger, Martin
|0 P:(DE-He78)cf4656ab05919cc784af4e9812f5a9fa
|b 10
|u dkfz
700 1 _ |a Bauer, Fabian
|0 P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031
|b 11
700 1 _ |a Riebl, Veronika
|b 12
700 1 _ |a Rotkopf, Lukas Thomas
|0 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
|b 13
|u dkfz
700 1 _ |a Zhang, Kevin Sun
|0 P:(DE-He78)b542df279437ced507cda1a8c93a2d4d
|b 14
|u dkfz
700 1 _ |a Afat, Saif
|b 15
700 1 _ |a Besemer, Britta
|b 16
700 1 _ |a Hoffmann, Martin
|b 17
700 1 _ |a Ringelstein, Adrian
|b 18
700 1 _ |a Graeven, Ullrich
|b 19
700 1 _ |a Fedders, Dieter
|b 20
700 1 _ |a Hänel, Mathias
|b 21
700 1 _ |a Antoch, Gerald
|b 22
700 1 _ |a Fenk, Roland
|b 23
700 1 _ |a Mahnken, Andreas H
|b 24
700 1 _ |a Mann, Christoph
|b 25
700 1 _ |a Mokry, Theresa
|b 26
700 1 _ |a Raab, Marc-Steffen
|b 27
700 1 _ |a Weinhold, Niels
|b 28
700 1 _ |a Mai, Elias Karl
|b 29
700 1 _ |a Goldschmidt, Hartmut
|b 30
700 1 _ |a Weber, Tim Frederik
|b 31
700 1 _ |a Delorme, Stefan
|0 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
|b 32
|u dkfz
700 1 _ |a Neher, Peter
|0 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
|b 33
|u dkfz
700 1 _ |a Schlemmer, Heinz-Peter
|0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
|b 34
|e Last author
|u dkfz
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 35
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.acra.2025.06.034
|g p. S1076633225006142
|0 PERI:(DE-600)2050425-1
|n 10
|p 6012-6026
|t Academic radiology
|v 32
|y 2025
|x 1076-6332
909 C O |p VDB
|o oai:inrepo02.dkfz.de:302832
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e7c860fe438c12cbe5f071b3f86d5738
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)05779b8fc2a612fdf8364db690f3480c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)b05a293a4cd1e8f09cdbc953de8ed6d1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)d52d4217d38d20b78d1bc8014e2b0c35
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)ec69b596ea6cd55401413c047f15db31
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)743a4a82daab55306a2c88b9f6bf8c2f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)cf4656ab05919cc784af4e9812f5a9fa
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)adc25b1dbf85abdffe5d2300d1265031
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)d7135c1486ffd923f71735d40a3d7a0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)b542df279437ced507cda1a8c93a2d4d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 32
|6 P:(DE-He78)3e76653311420a51a5faeb80363bd73e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 33
|6 P:(DE-He78)64313331bb3bdc0902ff88697f402c92
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 34
|6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 35
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACAD RADIOL : 2022
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
920 2 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 2 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 1
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 3
920 0 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21