001     302842
005     20250720021444.0
024 7 _ |a 10.1016/j.radonc.2025.111039
|2 doi
024 7 _ |a pmid:40645505
|2 pmid
024 7 _ |a 0167-8140
|2 ISSN
024 7 _ |a 1879-0887
|2 ISSN
024 7 _ |a altmetric:179276168
|2 altmetric
037 _ _ |a DKFZ-2025-01382
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zamboglou, Constantinos
|b 0
245 _ _ |a oDigital pathology biomarkers for guiding radiotherapy-based treatment concepts in prostate cancer - a systematic review and expert consensus.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752665305_10334
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Current risk-stratification systems for prostate cancer (PCa) do not sufficiently reflect the disease heterogeneity, and digital pathology (DP) combined with artificial intelligence (AI) tools (DP-AI) may offer a solution to this challenge. The aim of this work is to summarize the role of DP-AI for PCa patients treated with radiotherapy (RT), and to point out future areas of research. We conducted (1) a systematic review on the evidence of DP-AI for patients treated with RT and (2) a survey of experts using a modified Delphi method, addressing the current role of DP-AI in clinical and research practice to identify relevant fields of future development. Eleven studies investigated DP-AI in PCa RT, with most using the multimodal AI (MMAI) classifier and four ongoing studies are currently prospectively testing the DP-AI performance. DP-AI showed strong prognostic and predictive performance for endpoints like distant metastasis free survival and overall survival, outperforming traditional risk models and assisting treatment decisions such as androgen deprivation therapy (ADT) duration. Fifty-one and 35 experts responded to round 1 and round 2 of the survey respectively. Questions with ≥75 % agreement were considered relevant and included in the qualitative analysis. Survey results confirmed growing adoption of DP scanners, although regional differences in re-imbursement mechanisms and availability persist, with experts endorsing DP-AI's potential across localized, postoperative, and metastatic settings, though further prospective validation is needed. DP-AI tools show strong prognostic and predictive potential in various PCa by guiding patient stratification and optimising ADT duration in primary RT. Prospective studies and validation in cohorts using modern diagnostic and treatment methods are needed before broad clinical adoption.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Androgen deprivation therapy
|2 Other
650 _ 7 |a Artificial intelligence
|2 Other
650 _ 7 |a Biomarkers
|2 Other
650 _ 7 |a Digital pathology
|2 Other
650 _ 7 |a Personalized medicine
|2 Other
650 _ 7 |a Prostate cancer
|2 Other
650 _ 7 |a Radiotherapy
|2 Other
650 _ 7 |a Risk stratification
|2 Other
650 _ 7 |a Treatment selection
|2 Other
700 1 _ |a Doncker, William De
|b 1
700 1 _ |a Christoforou, Andreas Thomas
|b 2
700 1 _ |a Arcangeli, Stefano
|b 3
700 1 _ |a Berlin, Alejandro
|b 4
700 1 _ |a Blanchard, Pierre
|b 5
700 1 _ |a Bauman, Glenn
|b 6
700 1 _ |a Campi, Riccardo
|b 7
700 1 _ |a Castro, Elena
|b 8
700 1 _ |a Choudhury, Ananya
|b 9
700 1 _ |a Pra, Alan Dal
|b 10
700 1 _ |a Draulans, Cédric
|b 11
700 1 _ |a Desai, Neil
|b 12
700 1 _ |a Ferentinos, Konstantinos
|b 13
700 1 _ |a Francolini, Giulio
|b 14
700 1 _ |a Gillessen, Silke
|b 15
700 1 _ |a Grosu, Anca-Ligia
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Rivas, Juan Gómez
|b 17
700 1 _ |a Hoelscher, Tobias
|b 18
700 1 _ |a Hruby, George
|b 19
700 1 _ |a Jereczek-Fossa, Barbara Alicja
|b 20
700 1 _ |a Kamran, Sophia
|b 21
700 1 _ |a Kasivisvanathan, Veeru
|b 22
700 1 _ |a Kishan, Amar U
|b 23
700 1 _ |a Kounnis, Valentinos
|b 24
700 1 _ |a Loblaw, Andrew
|b 25
700 1 _ |a Martin, Jarad
|b 26
700 1 _ |a Mastroleo, Federico
|b 27
700 1 _ |a Merseburger, Axel S
|b 28
700 1 _ |a Miszczyk, Marcin
|b 29
700 1 _ |a Mohamad, Osama
|b 30
700 1 _ |a Ost, Piet
|b 31
700 1 _ |a Papatsoris, Athanasios
|b 32
700 1 _ |a Peeken, Jan C
|0 P:(DE-HGF)0
|b 33
700 1 _ |a Sanguedolce, Francesco
|b 34
700 1 _ |a Sargos, Paul
|b 35
700 1 _ |a Schmidt-Hegemann, Nina
|b 36
700 1 _ |a Seibert, Tyler M
|b 37
700 1 _ |a Shelan, Mohamed
|b 38
700 1 _ |a Siva, Shankar
|b 39
700 1 _ |a Soeterik, Timo F W
|b 40
700 1 _ |a Spratt, Daniel E
|b 41
700 1 _ |a Stenzl, Arnulf
|b 42
700 1 _ |a Strouthos, Iosif
|b 43
700 1 _ |a Sutera, Philip
|b 44
700 1 _ |a Supiot, Stephane
|b 45
700 1 _ |a Tilki, Derya
|b 46
700 1 _ |a Tran, Phuoc T
|b 47
700 1 _ |a Tree, Alison C
|b 48
700 1 _ |a Tward, Jonathan
|b 49
700 1 _ |a Ürün, Yüksel
|b 50
700 1 _ |a Vapiwala, Neha
|b 51
700 1 _ |a Waddle, Mark R
|b 52
700 1 _ |a Wegener, Eric
|b 53
700 1 _ |a Zilli, Thomas
|b 54
700 1 _ |a Murthy, Vedang
|b 55
700 1 _ |a Thieme, Alexander Henry
|b 56
700 1 _ |a Spohn, Simon
|b 57
773 _ _ |a 10.1016/j.radonc.2025.111039
|g Vol. 210, p. 111039 -
|0 PERI:(DE-600)1500707-8
|p 111039
|t Radiotherapy and oncology
|v 210
|y 2025
|x 0167-8140
909 C O |o oai:inrepo02.dkfz.de:302842
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 16
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 33
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIOTHER ONCOL : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b RADIOTHER ONCOL : 2022
|d 2025-01-07
920 1 _ |0 I:(DE-He78)FR01-20160331
|k FR01
|l DKTK Koordinierungsstelle Freiburg
|x 0
920 1 _ |0 I:(DE-He78)MU01-20160331
|k MU01
|l DKTK Koordinierungsstelle München
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)FR01-20160331
980 _ _ |a I:(DE-He78)MU01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21