001     302867
005     20250718114119.0
024 7 _ |a 10.1038/s41598-025-05091-0
|2 doi
024 7 _ |a pmid:40595983
|2 pmid
024 7 _ |a pmc:PMC12218285
|2 pmc
037 _ _ |a DKFZ-2025-01407
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Palm, Viktoria
|b 0
245 _ _ |a AI-based CT assessment of 3117 vertebrae reveals significant sex-specific vertebral height differences.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752747684_14021
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Predicting vertebral height is complex due to individual factors. AI-based medical imaging analysis offers new opportunities for vertebral assessment. Thereby, these novel methods may contribute to sex-adapted nomograms and vertebral height prediction models, aiding in diagnosing spinal conditions like compression fractures and supporting individualized, sex-specific medicine. In this study an AI-based CT-imaging spine analysis of 262 subjects (mean age 32.36 years, range 20-54 years) was conducted, including a total of 3117 vertebrae, to assess sex-associated anatomical variations. Automated segmentations provided anterior, central, and posterior vertebral heights. Regression analysis with a cubic spline linear mixed-effects model was adapted to age, sex, and spinal segments. Measurement reliability was confirmed by two readers with an intraclass correlation coefficient (ICC) of 0.94-0.98. Female vertebral heights were consistently smaller than males (p < 0.05). The largest differences were found in the upper thoracic spine (T1-T6), with mean differences of 7.9-9.0%. Specifically, T1 and T2 showed differences of 8.6% and 9.0%, respectively. The strongest height increase between consecutive vertebrae was observed from T9 to L1 (mean slope of 1.46; 6.63% for females and 1.53; 6.48% for males). This study highlights significant sex-based differences in vertebral heights, resulting in sex-adapted nomograms that can enhance diagnostic accuracy and support individualized patient assessments.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Anthropometry
|2 Other
650 _ 7 |a Artificial intelligence
|2 Other
650 _ 7 |a Image interpretation, computer-assisted
|2 Other
650 _ 7 |a Image processing, computer-assisted
|2 Other
650 _ 7 |a Sex characteristics
|2 Other
650 _ 7 |a Spine
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Tomography, X-Ray Computed: methods
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
650 _ 2 |a Sex Characteristics
|2 MeSH
650 _ 2 |a Thoracic Vertebrae: diagnostic imaging
|2 MeSH
650 _ 2 |a Thoracic Vertebrae: anatomy & histology
|2 MeSH
650 _ 2 |a Sex Factors
|2 MeSH
650 _ 2 |a Spine: diagnostic imaging
|2 MeSH
650 _ 2 |a Spine: anatomy & histology
|2 MeSH
650 _ 2 |a Nomograms
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
700 1 _ |a Thangamani, Subasini
|b 1
700 1 _ |a Budai, Bettina Katalin
|b 2
700 1 _ |a Skornitzke, Stephan
|b 3
700 1 _ |a Eckl, Kira
|b 4
700 1 _ |a Tong, Elizabeth
|b 5
700 1 _ |a Sedaghat, Sam
|b 6
700 1 _ |a Heußel, Claus Peter
|b 7
700 1 _ |a von Stackelberg, Oyunbileg
|b 8
700 1 _ |a Engelhardt, Sandy
|b 9
700 1 _ |a Kopytova, Taisiya
|0 P:(DE-He78)a38c565ea337ec882cb349a58d90fffb
|b 10
700 1 _ |a Norajitra, Tobias
|0 P:(DE-He78)a70f21a2bf78bbc1306c3d432ae08dc7
|b 11
|u dkfz
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 12
|u dkfz
700 1 _ |a Kauczor, Hans-Ulrich
|b 13
700 1 _ |a Wielpütz, Mark Oliver
|b 14
773 _ _ |a 10.1038/s41598-025-05091-0
|g Vol. 15, no. 1, p. 20756
|0 PERI:(DE-600)2615211-3
|n 1
|p 20756
|t Scientific reports
|v 15
|y 2025
|x 2045-2322
909 C O |o oai:inrepo02.dkfz.de:302867
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)a38c565ea337ec882cb349a58d90fffb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)a70f21a2bf78bbc1306c3d432ae08dc7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21