Home > Publications database > AI-based CT assessment of 3117 vertebrae reveals significant sex-specific vertebral height differences. > print |
001 | 302867 | ||
005 | 20250718114119.0 | ||
024 | 7 | _ | |a 10.1038/s41598-025-05091-0 |2 doi |
024 | 7 | _ | |a pmid:40595983 |2 pmid |
024 | 7 | _ | |a pmc:PMC12218285 |2 pmc |
037 | _ | _ | |a DKFZ-2025-01407 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Palm, Viktoria |b 0 |
245 | _ | _ | |a AI-based CT assessment of 3117 vertebrae reveals significant sex-specific vertebral height differences. |
260 | _ | _ | |a [London] |c 2025 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1752747684_14021 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Predicting vertebral height is complex due to individual factors. AI-based medical imaging analysis offers new opportunities for vertebral assessment. Thereby, these novel methods may contribute to sex-adapted nomograms and vertebral height prediction models, aiding in diagnosing spinal conditions like compression fractures and supporting individualized, sex-specific medicine. In this study an AI-based CT-imaging spine analysis of 262 subjects (mean age 32.36 years, range 20-54 years) was conducted, including a total of 3117 vertebrae, to assess sex-associated anatomical variations. Automated segmentations provided anterior, central, and posterior vertebral heights. Regression analysis with a cubic spline linear mixed-effects model was adapted to age, sex, and spinal segments. Measurement reliability was confirmed by two readers with an intraclass correlation coefficient (ICC) of 0.94-0.98. Female vertebral heights were consistently smaller than males (p < 0.05). The largest differences were found in the upper thoracic spine (T1-T6), with mean differences of 7.9-9.0%. Specifically, T1 and T2 showed differences of 8.6% and 9.0%, respectively. The strongest height increase between consecutive vertebrae was observed from T9 to L1 (mean slope of 1.46; 6.63% for females and 1.53; 6.48% for males). This study highlights significant sex-based differences in vertebral heights, resulting in sex-adapted nomograms that can enhance diagnostic accuracy and support individualized patient assessments. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Anthropometry |2 Other |
650 | _ | 7 | |a Artificial intelligence |2 Other |
650 | _ | 7 | |a Image interpretation, computer-assisted |2 Other |
650 | _ | 7 | |a Image processing, computer-assisted |2 Other |
650 | _ | 7 | |a Sex characteristics |2 Other |
650 | _ | 7 | |a Spine |2 Other |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Adult |2 MeSH |
650 | _ | 2 | |a Male |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a Middle Aged |2 MeSH |
650 | _ | 2 | |a Tomography, X-Ray Computed: methods |2 MeSH |
650 | _ | 2 | |a Young Adult |2 MeSH |
650 | _ | 2 | |a Sex Characteristics |2 MeSH |
650 | _ | 2 | |a Thoracic Vertebrae: diagnostic imaging |2 MeSH |
650 | _ | 2 | |a Thoracic Vertebrae: anatomy & histology |2 MeSH |
650 | _ | 2 | |a Sex Factors |2 MeSH |
650 | _ | 2 | |a Spine: diagnostic imaging |2 MeSH |
650 | _ | 2 | |a Spine: anatomy & histology |2 MeSH |
650 | _ | 2 | |a Nomograms |2 MeSH |
650 | _ | 2 | |a Reproducibility of Results |2 MeSH |
700 | 1 | _ | |a Thangamani, Subasini |b 1 |
700 | 1 | _ | |a Budai, Bettina Katalin |b 2 |
700 | 1 | _ | |a Skornitzke, Stephan |b 3 |
700 | 1 | _ | |a Eckl, Kira |b 4 |
700 | 1 | _ | |a Tong, Elizabeth |b 5 |
700 | 1 | _ | |a Sedaghat, Sam |b 6 |
700 | 1 | _ | |a Heußel, Claus Peter |b 7 |
700 | 1 | _ | |a von Stackelberg, Oyunbileg |b 8 |
700 | 1 | _ | |a Engelhardt, Sandy |b 9 |
700 | 1 | _ | |a Kopytova, Taisiya |0 P:(DE-He78)a38c565ea337ec882cb349a58d90fffb |b 10 |
700 | 1 | _ | |a Norajitra, Tobias |0 P:(DE-He78)a70f21a2bf78bbc1306c3d432ae08dc7 |b 11 |u dkfz |
700 | 1 | _ | |a Maier-Hein, Klaus |0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3 |b 12 |u dkfz |
700 | 1 | _ | |a Kauczor, Hans-Ulrich |b 13 |
700 | 1 | _ | |a Wielpütz, Mark Oliver |b 14 |
773 | _ | _ | |a 10.1038/s41598-025-05091-0 |g Vol. 15, no. 1, p. 20756 |0 PERI:(DE-600)2615211-3 |n 1 |p 20756 |t Scientific reports |v 15 |y 2025 |x 2045-2322 |
909 | C | O | |o oai:inrepo02.dkfz.de:302867 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 10 |6 P:(DE-He78)a38c565ea337ec882cb349a58d90fffb |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 11 |6 P:(DE-He78)a70f21a2bf78bbc1306c3d432ae08dc7 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-18 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-18 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-He78)E230-20160331 |k E230 |l E230 Medizinische Bildverarbeitung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E230-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|