001     302869
005     20250718114119.0
024 7 _ |a 10.7554/eLife.105311
|2 doi
024 7 _ |a pmid:40600802
|2 pmid
024 7 _ |a pmc:PMC12221301
|2 pmc
037 _ _ |a DKFZ-2025-01409
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Roiuk, Mykola
|0 P:(DE-He78)4543601bf14234f35021d658a5228201
|b 0
|e First author
|u dkfz
245 _ _ |a Human eIF2A has a minimal role in translation initiation and in uORF-mediated translational control in HeLa cells.
260 _ _ |a Cambridge
|c 2025
|b eLife Sciences Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752747737_14023
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B140#LA:B140#
520 _ _ |a Translation initiation in eukaryotes requires a 40 S ribosome loaded with initiator tRNA which scans for an initiation codon. The initiator tRNA is usually recruited to the ribosome as part of a ternary complex composed of initiator tRNA, eIF2, and GTP. Although initiator tRNA recruitment was originally ascribed to another factor, eIF2A, it was later disproven and shown to occur via eIF2. Nonetheless, eIF2A is still considered a translation initiation factor because it binds the ribosome and shows genetic interactions with other initiation factors such as eIF4E. The exact function of eIF2A during translation initiation, however, remains unclear. Here, we use ribosome profiling and luciferase reporter assays to systematically test in HeLa cells the role of eIF2A in translation initiation, including translation of upstream ORFs. Since eIF2A is thought to take over the function of eIF2 when eIF2 is inhibited, we also test conditions where the integrated stress response is activated. In none of our assays, however, could we detect a role of eIF2A in translation initiation. It is possible that eIF2A plays a role in translation regulation in specific conditions that we have not tested here, or that it plays a role in a different aspect of RNA biology.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a biochemistry
|2 Other
650 _ 7 |a chemical biology
|2 Other
650 _ 7 |a developmental biology
|2 Other
650 _ 7 |a eIF2
|2 Other
650 _ 7 |a eIF2A
|2 Other
650 _ 7 |a human
|2 Other
650 _ 7 |a translation
|2 Other
650 _ 7 |a Eukaryotic Initiation Factor-2
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a HeLa Cells
|2 MeSH
650 _ 2 |a Eukaryotic Initiation Factor-2: metabolism
|2 MeSH
650 _ 2 |a Eukaryotic Initiation Factor-2: genetics
|2 MeSH
650 _ 2 |a Peptide Chain Initiation, Translational
|2 MeSH
650 _ 2 |a Open Reading Frames
|2 MeSH
650 _ 2 |a Protein Biosynthesis
|2 MeSH
650 _ 2 |a Ribosomes: metabolism
|2 MeSH
700 1 _ |a Neff, Marilena
|0 P:(DE-He78)725adf28bb1f2600ee6fca8c48266e56
|b 1
|u dkfz
700 1 _ |a Teleman, Aurelio
|0 P:(DE-He78)5ebc16fd8019dbfde58e0125b001b599
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.7554/eLife.105311
|g Vol. 14, p. RP105311
|0 PERI:(DE-600)2687154-3
|p RP105311
|t eLife
|v 14
|y 2025
|x 2050-084X
909 C O |o oai:inrepo02.dkfz.de:302869
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)4543601bf14234f35021d658a5228201
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)725adf28bb1f2600ee6fca8c48266e56
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)5ebc16fd8019dbfde58e0125b001b599
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELIFE : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-30T13:58:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-30T13:58:16Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-30T13:58:16Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ELIFE : 2022
|d 2024-12-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-28
920 2 _ |0 I:(DE-He78)B140-20160331
|k B140
|l B140 Signal Transduction in Cancer
|x 0
920 1 _ |0 I:(DE-He78)B140-20160331
|k B140
|l B140 Signal Transduction in Cancer
|x 0
920 0 _ |0 I:(DE-He78)B140-20160331
|k B140
|l B140 Signal Transduction in Cancer
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B140-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21