000302880 001__ 302880
000302880 005__ 20250720021525.0
000302880 0247_ $$2doi$$a10.1016/j.nbd.2025.107019
000302880 0247_ $$2pmid$$apmid:40618856
000302880 0247_ $$2ISSN$$a0969-9961
000302880 0247_ $$2ISSN$$a1095-953X
000302880 0247_ $$2altmetric$$aaltmetric:179030134
000302880 037__ $$aDKFZ-2025-01420
000302880 041__ $$aEnglish
000302880 082__ $$a570
000302880 1001_ $$aZhang, Li$$b0
000302880 245__ $$aIncreased BNIP3-mediated mitophagy attenuates GDAP1 loss of function - implications for Charcot-Marie-Tooth disease 4A.
000302880 260__ $$a[Amsterdam]$$bElsevier$$c2025
000302880 3367_ $$2DRIVER$$aarticle
000302880 3367_ $$2DataCite$$aOutput Types/Journal article
000302880 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752751126_14019
000302880 3367_ $$2BibTeX$$aARTICLE
000302880 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000302880 3367_ $$00$$2EndNote$$aJournal Article
000302880 520__ $$aCharcot-Marie-Tooth disease type 4 A ((CMT4A), an autosomal recessive neuropathy, is caused by mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1). GDAP1 resides in the outer mitochondrial membrane facing the cytosol and is involved in mitochondrial dynamics and function. Its perturbation affects mitochondrial shape, contact sites, redox homeostasis and cellular metabolism. In response to GDAP1 knockdown in a human neuronal cell line, we found increased mitochondrial turnover, biogenesis and mitophagy. This was associated with more lysosomal proteins in mitochondrial fractions including BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and its homolog BNIP3-like (BNIP3L) - proteins involved in the recruitment of autophagy machinery via direct interaction. Flies with neural Gdap1 knockdown also exhibited upregulated levels of the sole BNIP3 ortholog. Neural expression of human BNIP3 reduced the detrimental effects of Gdap1 knockdown on eclosion and climbing ability in adult flies, while simultaneous knockdown of both genes was detrimental. These findings suggest that increased BNIP3-driven mitophagy may act as a protective mechanism, partially counteracting the cellular dysfunction caused by GDAP1 loss of function, and highlight the potential of targeting mitophagy pathways as a therapeutic strategy for CMT4A.
000302880 536__ $$0G:(DE-HGF)POF4-314$$a314 - Immunologie und Krebs (POF4-314)$$cPOF4-314$$fPOF IV$$x0
000302880 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000302880 650_7 $$2Other$$aBNIP3
000302880 650_7 $$2Other$$aCharcot-Marie-tooth (CMT) disease
000302880 650_7 $$2Other$$aDrosophila
000302880 650_7 $$2Other$$aGDAP1
000302880 650_7 $$2Other$$aMitophagy
000302880 7001_ $$aPouya, Alireza$$b1
000302880 7001_ $$aKopetzky, Janina$$b2
000302880 7001_ $$aBitar, Sara$$b3
000302880 7001_ $$aWolf, Christina$$b4
000302880 7001_ $$aBello, Federica Dal$$b5
000302880 7001_ $$0P:(DE-He78)4569ef2919d2438765ad71515f53646b$$aGómez-Zepeda, David$$b6$$udkfz
000302880 7001_ $$0P:(DE-He78)74e391c68d7926be83d679f3d8891e33$$aTenzer, Stefan$$b7$$udkfz
000302880 7001_ $$aMethner, Axel$$b8
000302880 773__ $$0PERI:(DE-600)1471408-5$$a10.1016/j.nbd.2025.107019$$gVol. 213, p. 107019 -$$p107019$$tNeurobiology of disease$$v213$$x0969-9961$$y2025
000302880 909CO $$ooai:inrepo02.dkfz.de:302880$$pVDB
000302880 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4569ef2919d2438765ad71515f53646b$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000302880 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)74e391c68d7926be83d679f3d8891e33$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000302880 9131_ $$0G:(DE-HGF)POF4-314$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImmunologie und Krebs$$x0
000302880 9141_ $$y2025
000302880 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:49:08Z
000302880 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:49:08Z
000302880 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:49:08Z
000302880 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROBIOL DIS : 2022$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROBIOL DIS : 2022$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-01
000302880 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-01
000302880 9201_ $$0I:(DE-He78)D191-20160331$$kD191$$lHi-TRON Immunoproteomik$$x0
000302880 9201_ $$0I:(DE-He78)D190-20160331$$kD190$$lHI-TRON zentral$$x1
000302880 980__ $$ajournal
000302880 980__ $$aVDB
000302880 980__ $$aI:(DE-He78)D191-20160331
000302880 980__ $$aI:(DE-He78)D190-20160331
000302880 980__ $$aUNRESTRICTED