001     302880
005     20250720021525.0
024 7 _ |a 10.1016/j.nbd.2025.107019
|2 doi
024 7 _ |a pmid:40618856
|2 pmid
024 7 _ |a 0969-9961
|2 ISSN
024 7 _ |a 1095-953X
|2 ISSN
024 7 _ |a altmetric:179030134
|2 altmetric
037 _ _ |a DKFZ-2025-01420
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Zhang, Li
|b 0
245 _ _ |a Increased BNIP3-mediated mitophagy attenuates GDAP1 loss of function - implications for Charcot-Marie-Tooth disease 4A.
260 _ _ |a [Amsterdam]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752751126_14019
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Charcot-Marie-Tooth disease type 4 A ((CMT4A), an autosomal recessive neuropathy, is caused by mutations in ganglioside-induced differentiation-associated protein 1 (GDAP1). GDAP1 resides in the outer mitochondrial membrane facing the cytosol and is involved in mitochondrial dynamics and function. Its perturbation affects mitochondrial shape, contact sites, redox homeostasis and cellular metabolism. In response to GDAP1 knockdown in a human neuronal cell line, we found increased mitochondrial turnover, biogenesis and mitophagy. This was associated with more lysosomal proteins in mitochondrial fractions including BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) and its homolog BNIP3-like (BNIP3L) - proteins involved in the recruitment of autophagy machinery via direct interaction. Flies with neural Gdap1 knockdown also exhibited upregulated levels of the sole BNIP3 ortholog. Neural expression of human BNIP3 reduced the detrimental effects of Gdap1 knockdown on eclosion and climbing ability in adult flies, while simultaneous knockdown of both genes was detrimental. These findings suggest that increased BNIP3-driven mitophagy may act as a protective mechanism, partially counteracting the cellular dysfunction caused by GDAP1 loss of function, and highlight the potential of targeting mitophagy pathways as a therapeutic strategy for CMT4A.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a BNIP3
|2 Other
650 _ 7 |a Charcot-Marie-tooth (CMT) disease
|2 Other
650 _ 7 |a Drosophila
|2 Other
650 _ 7 |a GDAP1
|2 Other
650 _ 7 |a Mitophagy
|2 Other
700 1 _ |a Pouya, Alireza
|b 1
700 1 _ |a Kopetzky, Janina
|b 2
700 1 _ |a Bitar, Sara
|b 3
700 1 _ |a Wolf, Christina
|b 4
700 1 _ |a Bello, Federica Dal
|b 5
700 1 _ |a Gómez-Zepeda, David
|0 P:(DE-He78)4569ef2919d2438765ad71515f53646b
|b 6
|u dkfz
700 1 _ |a Tenzer, Stefan
|0 P:(DE-He78)74e391c68d7926be83d679f3d8891e33
|b 7
|u dkfz
700 1 _ |a Methner, Axel
|b 8
773 _ _ |a 10.1016/j.nbd.2025.107019
|g Vol. 213, p. 107019 -
|0 PERI:(DE-600)1471408-5
|p 107019
|t Neurobiology of disease
|v 213
|y 2025
|x 0969-9961
909 C O |o oai:inrepo02.dkfz.de:302880
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)4569ef2919d2438765ad71515f53646b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)74e391c68d7926be83d679f3d8891e33
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-04-12T14:49:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-04-12T14:49:08Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-04-12T14:49:08Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROBIOL DIS : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-01
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROBIOL DIS : 2022
|d 2025-01-01
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
920 1 _ |0 I:(DE-He78)D191-20160331
|k D191
|l Hi-TRON Immunoproteomik
|x 0
920 1 _ |0 I:(DE-He78)D190-20160331
|k D190
|l HI-TRON zentral
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)D191-20160331
980 _ _ |a I:(DE-He78)D190-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21