000302886 001__ 302886
000302886 005__ 20250718114121.0
000302886 0247_ $$2doi$$a10.1016/j.mri.2025.110455
000302886 0247_ $$2pmid$$apmid:40633855
000302886 0247_ $$2ISSN$$a0730-725X
000302886 0247_ $$2ISSN$$a1873-5894
000302886 037__ $$aDKFZ-2025-01426
000302886 041__ $$aEnglish
000302886 082__ $$a610
000302886 1001_ $$0P:(DE-He78)9b5f7e582e706e1ad20e65517c2da2e6$$aOswald, Lucas$$b0$$eFirst author$$udkfz
000302886 245__ $$aSpatially resolved diffusion pore imaging using k-space readout.
000302886 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
000302886 3367_ $$2DRIVER$$aarticle
000302886 3367_ $$2DataCite$$aOutput Types/Journal article
000302886 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752751689_14019
000302886 3367_ $$2BibTeX$$aARTICLE
000302886 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000302886 3367_ $$00$$2EndNote$$aJournal Article
000302886 500__ $$a#EA:E020#LA:E020#
000302886 520__ $$aNuclear magnetic resonance diffusion methods are powerful tools for investigating the underlying structure of materials or tissues. Diffusion pore imaging (DPI) provides access to information about the geometric shape of pores containing diffusible substances. This technique yields an averaged image of the pores present in the imaging volume and enables measurements at a scale much smaller than that of conventional MR imaging. For applications in non-homogeneous materials such as biological tissues or heterogeneous porous media, the integration of a second spatial encoding step is essential to distinguish pore shapes in different regions of the measurement volume. Here, we present a combination of two-dimensional q-space and two-dimensional k-space acquisition on a Bruker 9.4 T small animal scanner. A 2D pore space function is reconstructed in each image voxel obtained from k-space. The long-narrow sequence scheme necessary for DPI was extended with a conventional k-space imaging readout to fill both k- and q-space. A conventional spin-echo approach with a single refocusing pulse was employed. From two different regions of interest, the sizes of capillaries with inner diameters of 15 μm and 20 μm, respectively, present in a phantom could be estimated from one- and two-dimensional projections of the pore space function. Simulations using the multiple correlation function approach exhibit good agreement with the measured one-dimensional pore space functions. Existing residual phases in the measurement data were corrected using phase reference measurements in a structureless oil phantom. In summary, spatially resolved pore imaging allows for the reconstruction of pore shapes in specific regions of interest, reinforcing the potential of DPI to non-invasively explore cellular structure. This study demonstrates the ability to reveal the voxel-averaged shape of pore distributions within a single DPI measurement on a preclinical MR scanner.
000302886 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000302886 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000302886 650_7 $$2Other$$aDiffusion pore imaging
000302886 650_7 $$2Other$$aDiffusion weighting
000302886 650_7 $$2Other$$aPore sizes
000302886 650_7 $$2Other$$aSequence design
000302886 7001_ $$0P:(DE-He78)b64aa39b45dc01812c04369caa442684$$aRauch, Julian$$b1$$eFirst author$$udkfz
000302886 7001_ $$aLaun, Frederik B$$b2
000302886 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b3$$udkfz
000302886 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b4$$eLast author$$udkfz
000302886 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2025.110455$$gVol. 122, p. 110455 -$$p110455$$tMagnetic resonance imaging$$v122$$x0730-725X$$y2025
000302886 909CO $$ooai:inrepo02.dkfz.de:302886$$pVDB
000302886 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9b5f7e582e706e1ad20e65517c2da2e6$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000302886 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b64aa39b45dc01812c04369caa442684$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000302886 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000302886 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000302886 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000302886 9141_ $$y2025
000302886 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
000302886 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON IMAGING : 2022$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000302886 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
000302886 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000302886 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000302886 9200_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000302886 980__ $$ajournal
000302886 980__ $$aVDB
000302886 980__ $$aI:(DE-He78)E020-20160331
000302886 980__ $$aUNRESTRICTED