001     302886
005     20250718114121.0
024 7 _ |a 10.1016/j.mri.2025.110455
|2 doi
024 7 _ |a pmid:40633855
|2 pmid
024 7 _ |a 0730-725X
|2 ISSN
024 7 _ |a 1873-5894
|2 ISSN
037 _ _ |a DKFZ-2025-01426
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Oswald, Lucas
|0 P:(DE-He78)9b5f7e582e706e1ad20e65517c2da2e6
|b 0
|e First author
|u dkfz
245 _ _ |a Spatially resolved diffusion pore imaging using k-space readout.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752751689_14019
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E020#LA:E020#
520 _ _ |a Nuclear magnetic resonance diffusion methods are powerful tools for investigating the underlying structure of materials or tissues. Diffusion pore imaging (DPI) provides access to information about the geometric shape of pores containing diffusible substances. This technique yields an averaged image of the pores present in the imaging volume and enables measurements at a scale much smaller than that of conventional MR imaging. For applications in non-homogeneous materials such as biological tissues or heterogeneous porous media, the integration of a second spatial encoding step is essential to distinguish pore shapes in different regions of the measurement volume. Here, we present a combination of two-dimensional q-space and two-dimensional k-space acquisition on a Bruker 9.4 T small animal scanner. A 2D pore space function is reconstructed in each image voxel obtained from k-space. The long-narrow sequence scheme necessary for DPI was extended with a conventional k-space imaging readout to fill both k- and q-space. A conventional spin-echo approach with a single refocusing pulse was employed. From two different regions of interest, the sizes of capillaries with inner diameters of 15 μm and 20 μm, respectively, present in a phantom could be estimated from one- and two-dimensional projections of the pore space function. Simulations using the multiple correlation function approach exhibit good agreement with the measured one-dimensional pore space functions. Existing residual phases in the measurement data were corrected using phase reference measurements in a structureless oil phantom. In summary, spatially resolved pore imaging allows for the reconstruction of pore shapes in specific regions of interest, reinforcing the potential of DPI to non-invasively explore cellular structure. This study demonstrates the ability to reveal the voxel-averaged shape of pore distributions within a single DPI measurement on a preclinical MR scanner.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Diffusion pore imaging
|2 Other
650 _ 7 |a Diffusion weighting
|2 Other
650 _ 7 |a Pore sizes
|2 Other
650 _ 7 |a Sequence design
|2 Other
700 1 _ |a Rauch, Julian
|0 P:(DE-He78)b64aa39b45dc01812c04369caa442684
|b 1
|e First author
|u dkfz
700 1 _ |a Laun, Frederik B
|b 2
700 1 _ |a Ladd, Mark
|0 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
|b 3
|u dkfz
700 1 _ |a Kuder, Tristan Anselm
|0 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
|b 4
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.mri.2025.110455
|g Vol. 122, p. 110455 -
|0 PERI:(DE-600)1500646-3
|p 110455
|t Magnetic resonance imaging
|v 122
|y 2025
|x 0730-725X
909 C O |o oai:inrepo02.dkfz.de:302886
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)9b5f7e582e706e1ad20e65517c2da2e6
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)b64aa39b45dc01812c04369caa442684
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)022611a2317e4de40fd912e0a72293a8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAGN RESON IMAGING : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
920 2 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
920 1 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
920 0 _ |0 I:(DE-He78)E020-20160331
|k E020
|l E020 Med. Physik in der Radiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21