001     302889
005     20250720021536.0
024 7 _ |a 10.1016/j.compbiomed.2025.110640
|2 doi
024 7 _ |a pmid:40639009
|2 pmid
024 7 _ |a 0010-4825
|2 ISSN
024 7 _ |a 1879-0534
|2 ISSN
024 7 _ |a altmetric:179347685
|2 altmetric
037 _ _ |a DKFZ-2025-01429
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Denner, Stefan
|0 P:(DE-He78)e35f6a9bd89b1c66d107df8a2325a758
|b 0
|e First author
|u dkfz
245 _ _ |a Leveraging foundation models for content-based image retrieval in radiology.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752752309_14022
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E230#LA:E230#
520 _ _ |a Content-based image retrieval (CBIR) has the potential to significantly improve diagnostic aid and medical research in radiology. However, current CBIR systems face limitations due to their specialization to certain pathologies, limiting their utility. On the other hand, several vision foundation models have been shown to produce general-purpose visual features. Therefore, in this work, we propose using vision foundation models as powerful and versatile off-the-shelf feature extractors for content-based image retrieval. Our contributions include: (1) benchmarking a diverse set of vision foundation models on an extensive dataset comprising 1.6 million 2D radiological images across four modalities and 161 pathologies; (2) identifying weakly-supervised models, particularly BiomedCLIP, as highly effective, achieving a P@1 of up to 0.594 (P@3: 0.590, P@5: 0.588, P@10: 0.583), comparable to specialized CBIR systems but without additional training; (3) conducting an in-depth analysis of the impact of index size on retrieval performance; (4) evaluating the quality of embedding spaces generated by different models; and (5) investigating specific challenges associated with retrieving anatomical versus pathological structures. Despite these challenges, our research underscores the vast potential of foundation models for CBIR in radiology, proposing a shift towards versatile, general-purpose medical image retrieval systems that do not require specific tuning. Our code, dataset splits and embeddings are publicly available here.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Content-based image retrieval
|2 Other
650 _ 7 |a Foundation models
|2 Other
650 _ 7 |a Medical imaging
|2 Other
650 _ 7 |a Self-supervised learning
|2 Other
650 _ 7 |a Supervised learning
|2 Other
650 _ 7 |a Weakly-supervised learning
|2 Other
700 1 _ |a Zimmerer, David
|0 P:(DE-He78)c1fcef80eab3d1e4fc187faece1a439c
|b 1
|u dkfz
700 1 _ |a Bounias, Dimitrios
|0 P:(DE-He78)95f361c74f433d336bfd0a95bc9b0eba
|b 2
|u dkfz
700 1 _ |a Bujotzek, Markus
|0 P:(DE-He78)d52d4217d38d20b78d1bc8014e2b0c35
|b 3
|u dkfz
700 1 _ |a Xiao, Shuhan
|0 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
|b 4
|u dkfz
700 1 _ |a Stock, Raphael
|0 P:(DE-He78)166c110dab6977cb48587308422952ff
|b 5
|u dkfz
700 1 _ |a Kausch, Lisa
|0 P:(DE-He78)4854a5d7f6e812324fd74320396f4178
|b 6
700 1 _ |a Schader, Philipp
|0 P:(DE-He78)2529b97355581f2d933fcfd7908d9ed4
|b 7
|u dkfz
700 1 _ |a Penzkofer, Tobias
|b 8
700 1 _ |a Jäger, Paul
|0 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
|b 9
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 10
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.compbiomed.2025.110640
|g Vol. 196, no. Pt A, p. 110640 -
|0 PERI:(DE-600)1496984-1
|n Pt A
|p 110640
|t Computers in biology and medicine
|v 196
|y 2025
|x 0010-4825
909 C O |o oai:inrepo02.dkfz.de:302889
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)e35f6a9bd89b1c66d107df8a2325a758
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)c1fcef80eab3d1e4fc187faece1a439c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)95f361c74f433d336bfd0a95bc9b0eba
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)d52d4217d38d20b78d1bc8014e2b0c35
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)d2bf7126723ea8f6005ba141ea3c3e2c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)166c110dab6977cb48587308422952ff
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)4854a5d7f6e812324fd74320396f4178
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)2529b97355581f2d933fcfd7908d9ed4
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)04a0b5a49db132d8f00cee326cb743ca
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT BIOL MED : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b COMPUT BIOL MED : 2022
|d 2024-12-18
920 2 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 0 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21