000303000 001__ 303000 000303000 005__ 20250829150600.0 000303000 0247_ $$2doi$$a10.1007/s00120-025-02651-0 000303000 0247_ $$2ISSN$$a2731-7064 000303000 0247_ $$2ISSN$$a2731-7072 000303000 037__ $$aDKFZ-2025-01447 000303000 082__ $$a610 000303000 1001_ $$aRinderknecht, Emily$$b0 000303000 245__ $$aDigital urology : Possible uses for artificial intelligence and digital health applications. [Digitale UrologieEinsatzmöglichkeiten für künstliche Intelligenz und digitale Gesundheitsanwendungen]. 000303000 260__ $$aNew York]$$bSpringer Medizin$$c2025 000303000 3367_ $$2DRIVER$$aarticle 000303000 3367_ $$2DataCite$$aOutput Types/Journal article 000303000 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756472637_12784$$xReview Article 000303000 3367_ $$2BibTeX$$aARTICLE 000303000 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000303000 3367_ $$00$$2EndNote$$aJournal Article 000303000 500__ $$a2025 Sep;64(9):900-908 000303000 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000303000 588__ $$aDataset connected to CrossRef, Journals: inrepo02.dkfz.de 000303000 7001_ $$aAlexa, R.$$b1 000303000 7001_ $$aCarl, N.$$b2 000303000 7001_ $$0P:(DE-HGF)0$$aGoertz, M.$$b3 000303000 7001_ $$aWessels, F.$$b4 000303000 7001_ $$aBorgmann, H.$$b5 000303000 773__ $$0PERI:(DE-600)3123197-4$$a10.1007/s00120-025-02651-0$$n9$$p900-908$$tDie Urologie$$v64$$x2731-7064$$y2025 000303000 909CO $$ooai:inrepo02.dkfz.de:303000$$pVDB 000303000 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000303000 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000303000 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-20$$wger 000303000 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-20$$wger 000303000 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20 000303000 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20 000303000 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20 000303000 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-20 000303000 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20 000303000 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-20 000303000 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20 000303000 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20 000303000 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20 000303000 9201_ $$0I:(DE-He78)E250-20160331$$kE250$$lNWG KKE Multiparametrische Methoden zur Früherkennung des Prostatakarzinoms$$x0 000303000 980__ $$ajournal 000303000 980__ $$aVDB 000303000 980__ $$aI:(DE-He78)E250-20160331 000303000 980__ $$aUNRESTRICTED