001     303033
005     20250727021635.0
024 7 _ |a 10.1016/j.phro.2025.100805
|2 doi
024 7 _ |a pmid:40687306
|2 pmid
024 7 _ |a pmc:PMC12272478
|2 pmc
024 7 _ |a altmetric:179561333
|2 altmetric
037 _ _ |a DKFZ-2025-01480
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Puri, Tanuj
|b 0
245 _ _ |a Dose-response mapping of bladder and rectum in prostate cancer patients undergoing radiotherapy with and without baseline toxicity correction.
260 _ _ |a Amsterdam [u. a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753189415_32231
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Radiotherapy dose-response maps (DRM) combine dose-surface maps (DSM) and toxicity outcomes to identify high-risk subregions in organ-at-risk. This study assesses the impact of baseline toxicity correction on the identification of high-risk subregions in dose-response modeling for prostate cancer patients undergoing radiotherapy.The analysis included 1808 datasets, with 589 exclusions before toxicity-specific data removal. Bladder/rectum were automatically segmented on planning computed tomography scans, DSMs unwrapped into 91x90 voxel grids, and converted to equivalent doses in 2 Gy fractions (EQD2; α/β = 1 Gy). Seventeen late toxicities were assessed with two methods: (i) baseline toxicity subtracted from the maximum of 12- and 24-months toxicity scores, dichotomized at grade 1, and (ii) maximum of 12- and 24-months toxicity scores dichotomized at grade 1. DSMs were split accordingly, and voxel-wise t-values computed using Welch's t-equation. Statistically significant voxels were identified via the 95th percentile of maximum of t-value (Tmax) distribution.Event counts with baseline correction were 82/82/286/226 for urinary tract obstruction/retention/urgency/incontinence, respectively; without baseline correction, they were 93/104/465/361. For bladder DSMs, urinary incontinence, obstruction, retention, and urgency had 1143/186, 1768/1848, 516/0, and 33/0 significant voxels without/with baseline correction. For rectum DSMs, urinary incontinence and tract obstruction had 604/0 and 1980/889 significant voxels without/with baseline correction. However, no significant associations between rectal DSMs and rectum-related toxicities were found.DRM without baseline correction appears more sensitive to high-risk subregions due to higher event counts. Non-linear toxicity grading and multivariable analysis may enhance DRM reliability.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Dose-toxicity modeling
|2 Other
650 _ 7 |a IBDM
|2 Other
650 _ 7 |a Organ-at-risk
|2 Other
650 _ 7 |a Prostate cancer
|2 Other
650 _ 7 |a Radiotherapy
|2 Other
650 _ 7 |a VBA
|2 Other
700 1 _ |a Rancati, Tiziana
|b 1
700 1 _ |a Seibold, Petra
|0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
|b 2
|u dkfz
700 1 _ |a Webb, Adam
|b 3
700 1 _ |a Osorio, Eliana Vasquez
|b 4
700 1 _ |a Green, Andrew
|b 5
700 1 _ |a Gioscio, Eliana
|b 6
700 1 _ |a Azria, David
|b 7
700 1 _ |a Farcy-Jacquet, Marie-Pierre
|b 8
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 9
700 1 _ |a Dunning, Alison
|b 10
700 1 _ |a Lambrecht, Maarten
|b 11
700 1 _ |a Avuzzi, Barbara
|b 12
700 1 _ |a de Ruysscher, Dirk
|b 13
700 1 _ |a Sperk, Elena
|b 14
700 1 _ |a Vega, Ana
|b 15
700 1 _ |a Veldeman, Liv
|b 16
700 1 _ |a Rosenstein, Barry
|b 17
700 1 _ |a Shortall, Jane
|b 18
700 1 _ |a Kerns, Sarah
|b 19
700 1 _ |a Talbot, Christopher
|b 20
700 1 _ |a Morris, Andrew P
|b 21
700 1 _ |a McWilliam, Alan
|b 22
700 1 _ |a Hoskin, Peter
|b 23
700 1 _ |a Choudhury, Ananya
|b 24
700 1 _ |a West, Catharine
|b 25
700 1 _ |a van Herk, Marcel
|b 26
700 1 _ |a Consortium, REQUITE
|b 27
|e Collaboration Author
773 _ _ |a 10.1016/j.phro.2025.100805
|g Vol. 35, p. 100805 -
|0 PERI:(DE-600)2963795-8
|p 100805
|t Physics & Imaging in Radiation Oncology
|v 35
|y 2025
|x 2405-6316
909 C O |o oai:inrepo02.dkfz.de:303033
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:51:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:51:39Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:51:39Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-21
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21