Home > Publications database > Dose-response mapping of bladder and rectum in prostate cancer patients undergoing radiotherapy with and without baseline toxicity correction. > print |
001 | 303033 | ||
005 | 20250727021635.0 | ||
024 | 7 | _ | |a 10.1016/j.phro.2025.100805 |2 doi |
024 | 7 | _ | |a pmid:40687306 |2 pmid |
024 | 7 | _ | |a pmc:PMC12272478 |2 pmc |
024 | 7 | _ | |a altmetric:179561333 |2 altmetric |
037 | _ | _ | |a DKFZ-2025-01480 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Puri, Tanuj |b 0 |
245 | _ | _ | |a Dose-response mapping of bladder and rectum in prostate cancer patients undergoing radiotherapy with and without baseline toxicity correction. |
260 | _ | _ | |a Amsterdam [u. a.] |c 2025 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1753189415_32231 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Radiotherapy dose-response maps (DRM) combine dose-surface maps (DSM) and toxicity outcomes to identify high-risk subregions in organ-at-risk. This study assesses the impact of baseline toxicity correction on the identification of high-risk subregions in dose-response modeling for prostate cancer patients undergoing radiotherapy.The analysis included 1808 datasets, with 589 exclusions before toxicity-specific data removal. Bladder/rectum were automatically segmented on planning computed tomography scans, DSMs unwrapped into 91x90 voxel grids, and converted to equivalent doses in 2 Gy fractions (EQD2; α/β = 1 Gy). Seventeen late toxicities were assessed with two methods: (i) baseline toxicity subtracted from the maximum of 12- and 24-months toxicity scores, dichotomized at grade 1, and (ii) maximum of 12- and 24-months toxicity scores dichotomized at grade 1. DSMs were split accordingly, and voxel-wise t-values computed using Welch's t-equation. Statistically significant voxels were identified via the 95th percentile of maximum of t-value (Tmax) distribution.Event counts with baseline correction were 82/82/286/226 for urinary tract obstruction/retention/urgency/incontinence, respectively; without baseline correction, they were 93/104/465/361. For bladder DSMs, urinary incontinence, obstruction, retention, and urgency had 1143/186, 1768/1848, 516/0, and 33/0 significant voxels without/with baseline correction. For rectum DSMs, urinary incontinence and tract obstruction had 604/0 and 1980/889 significant voxels without/with baseline correction. However, no significant associations between rectal DSMs and rectum-related toxicities were found.DRM without baseline correction appears more sensitive to high-risk subregions due to higher event counts. Non-linear toxicity grading and multivariable analysis may enhance DRM reliability. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Dose-toxicity modeling |2 Other |
650 | _ | 7 | |a IBDM |2 Other |
650 | _ | 7 | |a Organ-at-risk |2 Other |
650 | _ | 7 | |a Prostate cancer |2 Other |
650 | _ | 7 | |a Radiotherapy |2 Other |
650 | _ | 7 | |a VBA |2 Other |
700 | 1 | _ | |a Rancati, Tiziana |b 1 |
700 | 1 | _ | |a Seibold, Petra |0 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215 |b 2 |u dkfz |
700 | 1 | _ | |a Webb, Adam |b 3 |
700 | 1 | _ | |a Osorio, Eliana Vasquez |b 4 |
700 | 1 | _ | |a Green, Andrew |b 5 |
700 | 1 | _ | |a Gioscio, Eliana |b 6 |
700 | 1 | _ | |a Azria, David |b 7 |
700 | 1 | _ | |a Farcy-Jacquet, Marie-Pierre |b 8 |
700 | 1 | _ | |a Chang-Claude, Jenny |0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |b 9 |
700 | 1 | _ | |a Dunning, Alison |b 10 |
700 | 1 | _ | |a Lambrecht, Maarten |b 11 |
700 | 1 | _ | |a Avuzzi, Barbara |b 12 |
700 | 1 | _ | |a de Ruysscher, Dirk |b 13 |
700 | 1 | _ | |a Sperk, Elena |b 14 |
700 | 1 | _ | |a Vega, Ana |b 15 |
700 | 1 | _ | |a Veldeman, Liv |b 16 |
700 | 1 | _ | |a Rosenstein, Barry |b 17 |
700 | 1 | _ | |a Shortall, Jane |b 18 |
700 | 1 | _ | |a Kerns, Sarah |b 19 |
700 | 1 | _ | |a Talbot, Christopher |b 20 |
700 | 1 | _ | |a Morris, Andrew P |b 21 |
700 | 1 | _ | |a McWilliam, Alan |b 22 |
700 | 1 | _ | |a Hoskin, Peter |b 23 |
700 | 1 | _ | |a Choudhury, Ananya |b 24 |
700 | 1 | _ | |a West, Catharine |b 25 |
700 | 1 | _ | |a van Herk, Marcel |b 26 |
700 | 1 | _ | |a Consortium, REQUITE |b 27 |e Collaboration Author |
773 | _ | _ | |a 10.1016/j.phro.2025.100805 |g Vol. 35, p. 100805 - |0 PERI:(DE-600)2963795-8 |p 100805 |t Physics & Imaging in Radiation Oncology |v 35 |y 2025 |x 2405-6316 |
909 | C | O | |o oai:inrepo02.dkfz.de:303033 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)fd17a8dbf8d08ea5bb656dfef7398215 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 9 |6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:51:39Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:51:39Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:51:39Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-21 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0112 |2 StatID |b Emerging Sources Citation Index |d 2024-12-21 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-21 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-21 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-21 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l Epidemiologie von Krebs |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|