001     303081
005     20250827124026.0
024 7 _ |a 10.1038/s41586-025-09140-6
|2 doi
024 7 _ |a pmid:40702183
|2 pmid
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a altmetric:179576794
|2 altmetric
037 _ _ |a DKFZ-2025-01506
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Logsdon, Glennis A
|0 0000-0003-2396-0656
|b 0
245 _ _ |a Complex genetic variation in nearly complete human genomes.
260 _ _ |a London [u.a.]
|c 2025
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1756291170_16150
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany. / 2025 Aug;644(8076):430-441
520 _ _ |a Diverse sets of complete human genomes are required to construct a pangenome reference and to understand the extent of complex structural variation. Here we sequence 65 diverse human genomes and build 130 haplotype-resolved assemblies (median continuity of 130 Mb), closing 92% of all previous assembly gaps1,2 and reaching telomere-to-telomere status for 39% of the chromosomes. We highlight complete sequence continuity of complex loci, including the major histocompatibility complex (MHC), SMN1/SMN2, NBPF8 and AMY1/AMY2, and fully resolve 1,852 complex structural variants. In addition, we completely assemble and validate 1,246 human centromeres. We find up to 30-fold variation in α-satellite higher-order repeat array length and characterize the pattern of mobile element insertions into α-satellite higher-order repeat arrays. Although most centromeres predict a single site of kinetochore attachment, epigenetic analysis suggests the presence of two hypomethylated regions for 7% of centromeres. Combining our data with the draft pangenome reference1 significantly enhances genotyping accuracy from short-read data, enabling whole-genome inference3 to a median quality value of 45. Using this approach, 26,115 structural variants per individual are detected, substantially increasing the number of structural variants now amenable to downstream disease association studies.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Ebert, Peter
|0 0000-0001-7441-532X
|b 1
700 1 _ |a Audano, Peter A
|0 0000-0002-5187-0415
|b 2
700 1 _ |a Loftus, Mark
|0 0000-0002-6279-6855
|b 3
700 1 _ |a Porubsky, David
|0 0000-0001-8414-8966
|b 4
700 1 _ |a Ebler, Jana
|b 5
700 1 _ |a Yilmaz, Feyza
|0 0000-0001-8795-5800
|b 6
700 1 _ |a Hallast, Pille
|0 0000-0002-0588-3987
|b 7
700 1 _ |a Prodanov, Timofey
|0 0000-0001-7469-6651
|b 8
700 1 _ |a Yoo, DongAhn
|0 0000-0003-0033-3721
|b 9
700 1 _ |a Paisie, Carolyn A
|b 10
700 1 _ |a Harvey, William T
|b 11
700 1 _ |a Zhao, Xuefang
|b 12
700 1 _ |a Martino, Gianni V
|b 13
700 1 _ |a Henglin, Mir
|b 14
700 1 _ |a Munson, Katherine M
|0 0000-0001-8413-6498
|b 15
700 1 _ |a Rabbani, Keon
|b 16
700 1 _ |a Chin, Chen-Shan
|0 0000-0003-4394-2455
|b 17
700 1 _ |a Gu, Bida
|b 18
700 1 _ |a Ashraf, Hufsah
|b 19
700 1 _ |a Scholz, Stephan
|b 20
700 1 _ |a Austine-Orimoloye, Olanrewaju
|b 21
700 1 _ |a Balachandran, Parithi
|b 22
700 1 _ |a Bonder, Marc Jan
|0 P:(DE-He78)ed3a2ed903bfbc6b0c33ef7009b141ce
|b 23
700 1 _ |a Cheng, Haoyu
|0 0000-0002-9209-5793
|b 24
700 1 _ |a Chong, Zechen
|0 0000-0001-5750-1808
|b 25
700 1 _ |a Crabtree, Jonathan
|0 0000-0002-7286-5690
|b 26
700 1 _ |a Gerstein, Mark
|0 0000-0002-9746-3719
|b 27
700 1 _ |a Guethlein, Lisbeth A
|b 28
700 1 _ |a Hasenfeld, Patrick
|b 29
700 1 _ |a Hickey, Glenn
|0 0000-0002-2280-9404
|b 30
700 1 _ |a Hoekzema, Kendra
|b 31
700 1 _ |a Hunt, Sarah E
|0 0000-0002-8350-1235
|b 32
700 1 _ |a Jensen, Matthew
|b 33
700 1 _ |a Jiang, Yunzhe
|0 0000-0001-8768-0050
|b 34
700 1 _ |a Koren, Sergey
|0 0000-0002-1472-8962
|b 35
700 1 _ |a Kwon, Youngjun
|0 0000-0002-5024-2134
|b 36
700 1 _ |a Li, Chong
|b 37
700 1 _ |a Li, Heng
|b 38
700 1 _ |a Li, Jiaqi
|0 0000-0002-6796-335X
|b 39
700 1 _ |a Norman, Paul J
|0 0000-0001-8370-7703
|b 40
700 1 _ |a Oshima, Keisuke K
|b 41
700 1 _ |a Paten, Benedict
|0 0000-0001-8863-3539
|b 42
700 1 _ |a Phillippy, Adam M
|0 0000-0003-2983-8934
|b 43
700 1 _ |a Pollock, Nicholas R
|0 0000-0003-0114-528X
|b 44
700 1 _ |a Rausch, Tobias
|b 45
700 1 _ |a Rautiainen, Mikko
|b 46
700 1 _ |a Song, Yuwei
|0 0000-0003-2537-4343
|b 47
700 1 _ |a Söylev, Arda
|b 48
700 1 _ |a Sulovari, Arvis
|b 49
700 1 _ |a Surapaneni, Likhitha
|0 0000-0002-0575-7673
|b 50
700 1 _ |a Tsapalou, Vasiliki
|b 51
700 1 _ |a Zhou, Weichen
|0 0000-0003-4755-1072
|b 52
700 1 _ |a Zhou, Ying
|b 53
700 1 _ |a Zhu, Qihui
|b 54
700 1 _ |a Zody, Michael C
|0 0000-0001-6594-7199
|b 55
700 1 _ |a Mills, Ryan E
|0 0000-0003-3425-6998
|b 56
700 1 _ |a Devine, Scott E
|b 57
700 1 _ |a Shi, Xinghua
|b 58
700 1 _ |a Talkowski, Michael E
|b 59
700 1 _ |a Chaisson, Mark J P
|0 0000-0001-5395-1457
|b 60
700 1 _ |a Dilthey, Alexander T
|b 61
700 1 _ |a Konkel, Miriam K
|0 0000-0002-3190-1667
|b 62
700 1 _ |a Korbel, Jan O
|b 63
700 1 _ |a Lee, Charles
|0 0000-0001-7317-6662
|b 64
700 1 _ |a Beck, Christine R
|0 0000-0001-7821-8489
|b 65
700 1 _ |a Eichler, Evan E
|0 0000-0002-8246-4014
|b 66
700 1 _ |a Marschall, Tobias
|0 0000-0002-9376-1030
|b 67
773 _ _ |a 10.1038/s41586-025-09140-6
|0 PERI:(DE-600)1413423-8
|n 8076
|p 430-441
|t Nature
|v 644
|y 2025
|x 0028-0836
909 C O |p VDB
|o oai:inrepo02.dkfz.de:303081
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)ed3a2ed903bfbc6b0c33ef7009b141ce
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2025-01-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a IF >= 60
|0 StatID:(DE-HGF)9960
|2 StatID
|b NATURE : 2022
|d 2025-01-06
920 1 _ |0 I:(DE-He78)B260-20160331
|k B260
|l B260 Bioinformatik der Genomik und Systemgenetik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B260-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21