001     303115
005     20250727021740.0
024 7 _ |a 10.1172/JCI177813
|2 doi
024 7 _ |a pmid:40705465
|2 pmid
024 7 _ |a 0021-9738
|2 ISSN
024 7 _ |a 1558-8238
|2 ISSN
024 7 _ |a altmetric:179677474
|2 altmetric
037 _ _ |a DKFZ-2025-01534
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Zhang, Guokun
|b 0
245 _ _ |a A predictive endocrine resistance index accurately stratifies luminal breast cancer treatment responders and non-responders.
260 _ _ |a Ann Arbor, Mich.
|c 2025
|b ASCJ
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753449936_24369
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a epub
520 _ _ |a Endocrine therapy (ET) with tamoxifen (TAM) or aromatase inhibitors (AI) is highly effective against hormone receptor (HR) positive early breast cancer (BC), but resistance remains a major challenge. The primary objectives of our study were to understand the underlying mechanisms of primary resistance and to identify potential biomarkers.We selected >800 patients in three sub-cohorts (Discovery, N=364, matched pairs), Validation 1, N=270, Validation 2, N= 176) of the West German Study Group (WSG) Adjuvant Dynamic marker-Adjusted Personalized Therapy (ADAPT) trial who underwent short-term pre-operative TAM or AI treatment. Treatment response was assessed by immunohistochemical labeling of proliferating cells with Ki67 before and after ET. We performed comprehensive molecular profiling, including targeted next-generation sequencing (NGS) and DNA methylation analysis using EPIC arrays, on post-treatment tumor samples.TP53 mutations were strongly associated with primary resistance to both TAM and AI. In addition, we identified distinct DNA methylation patterns in resistant tumors, suggesting alterations in key signaling pathways and tumor microenvironment composition. Based on these findings and patient age, we developed the Predictive Endocrine ResistanCe Index (PERCI). PERCI accurately stratified responders and non-responders in both treatment groups in all three sub-cohorts and predicted progression-free survival in an external validation cohort and in the combined sub-cohorts.Our results highlight the potential of PERCI to guide personalized endocrine therapy and improve patient outcomes.WSG-ADAPT, ClinicalTrials.gov NCT01779206, Registered 2013-01-25, retrospectively registered.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Bioinformatics
|2 Other
650 _ 7 |a Breast cancer
|2 Other
650 _ 7 |a Clinical Research
|2 Other
650 _ 7 |a Clinical trials
|2 Other
650 _ 7 |a Epigenetics
|2 Other
650 _ 7 |a Oncology
|2 Other
700 1 _ |a Jurinovic, Vindi
|b 1
700 1 _ |a Bartels, Stephan
|b 2
700 1 _ |a Christgen, Matthias
|b 3
700 1 _ |a Christgen, Henriette
|b 4
700 1 _ |a Kandt, Leonie Donata
|b 5
700 1 _ |a Mishieva, Lidiya
|b 6
700 1 _ |a Ni, Hua
|b 7
700 1 _ |a Raap, Mieke
|b 8
700 1 _ |a Klein, Janin
|b 9
700 1 _ |a Katzke, Anna-Lena
|b 10
700 1 _ |a Hofmann, Winfried
|b 11
700 1 _ |a Steinemann, Doris
|b 12
700 1 _ |a Kates, Ronald E
|b 13
700 1 _ |a Gluz, Oleg
|b 14
700 1 _ |a Graeser, Monika
|b 15
700 1 _ |a Kuemmel, Sherko
|b 16
700 1 _ |a Nitz, Ulrike
|b 17
700 1 _ |a Plass, Christoph
|0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
|b 18
|u dkfz
700 1 _ |a Lehmann, Ulrich
|b 19
700 1 _ |a Zu Eulenburg, Christine
|b 20
700 1 _ |a Mansmann, Ulrich
|b 21
700 1 _ |a Gerhauser, Clarissa
|0 P:(DE-He78)3c4679d03b730156fae20c4948722efe
|b 22
|u dkfz
700 1 _ |a Harbeck, Nadia
|b 23
700 1 _ |a Kreipe, Hans H
|b 24
773 _ _ |a 10.1172/JCI177813
|0 PERI:(DE-600)2018375-6
|p nn
|t The journal of clinical investigation
|v nn
|y 2025
|x 0021-9738
909 C O |o oai:inrepo02.dkfz.de:303115
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 18
|6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)3c4679d03b730156fae20c4948722efe
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CLIN INVEST : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-16T10:37:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-16T10:37:49Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-02-16T10:37:49Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-02-16T10:37:49Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J CLIN INVEST : 2022
|d 2024-12-27
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-27
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21