001     303119
005     20251026023335.0
024 7 _ |a 10.1002/ijc.70064
|2 doi
024 7 _ |a pmid:40704764
|2 pmid
024 7 _ |a 0020-7136
|2 ISSN
024 7 _ |a 1097-0215
|2 ISSN
024 7 _ |a altmetric:180094005
|2 altmetric
037 _ _ |a DKFZ-2025-01538
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ding, Jie
|0 P:(DE-He78)0d94e103911be59650920a32e859c2ba
|b 0
|e First author
|u dkfz
245 _ _ |a Thirteen simple lifestyle scores and risk of cancer, cardiovascular disease, diabetes, and mortality: Prospective cohort study in the UK Biobank.
260 _ _ |a Bognor Regis
|c 2025
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1761125632_1907163
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070# / Volume157, Issue12, 15 December 2025, Pages 2495-2505
520 _ _ |a Numerous simple lifestyle scores have been developed for specific non-communicable diseases (NCDs). This research aimed to investigate and compare the associations of various lifestyle scores with the incidence and mortality of NCDs. In 76,399 participants from the UK Biobank, we investigated the associations of 13 lifestyle scores with the incidence and mortality of cancer, cardiovascular disease (CVD), type 2 diabetes (T2D), and a composite of these NCDs. Cox proportional-hazards regression models were used to estimate hazard ratios (HRs) for associations between lifestyle scores and NCD outcomes. During a median follow-up time of 10.5 years, 12,214 incident NCD cases and 2250 NCD deaths were documented. Higher lifestyle scores were generally associated with a reduced risk of overall NCDs (HRs ranging from 0.65 to 0.89) and NCD mortality (0.51-0.92). Cancer (HRs ranging from 0.72 to 0.98) and CVD (0.55-0.87) risk were less dependent on lifestyle behaviors than T2D (0.18-0.74). Notably, the top three scores associated with cancer outcomes included smoking as a component, and those for T2D included body mass index (BMI). For overall NCD outcomes, lifestyle scores including both smoking and BMI showed the strongest associations. Healthy Lifestyle Score and the Chronic Disease Risk Index were the overall best-performing scores to predict NCD risk and mortality. These findings suggest that the use of lifestyle scores designed for a single disease group can be extended for predicting multiple NCDs and mortality. Both smoking and BMI should be included in lifestyle scores aiming to predict overall NCD risk and mortality for future research and recommendations.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a cancer
|2 Other
650 _ 7 |a cardiovascular diseases
|2 Other
650 _ 7 |a lifestyle
|2 Other
650 _ 7 |a non‐communicable diseases
|2 Other
650 _ 7 |a type 2 diabetes
|2 Other
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 1
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 2
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1002/ijc.70064
|g p. ijc.70064
|0 PERI:(DE-600)1474822-8
|n 12
|p 2495-2505
|t International journal of cancer
|v 157
|y 2025
|x 0020-7136
909 C O |p VDB
|o oai:inrepo02.dkfz.de:303119
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)0d94e103911be59650920a32e859c2ba
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-17
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J CANCER : 2022
|d 2024-12-17
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J CANCER : 2022
|d 2024-12-17
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie der Krebsfrüherkennung
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie der Krebsfrüherkennung
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie der Krebsfrüherkennung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21