001     303120
005     20250727021747.0
024 7 _ |a 10.1093/noajnl/vdaf099
|2 doi
024 7 _ |a pmid:40703802
|2 pmid
024 7 _ |a pmc:PMC12284645
|2 pmc
024 7 _ |a altmetric:179651931
|2 altmetric
037 _ _ |a DKFZ-2025-01539
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Monnikhof, Matthijs
|b 0
245 _ _ |a Dual targeting of CD155/TIGIT and PD-L1/PD-1 immune checkpoints potentiates NK cell-mediated cytotoxicity in medulloblastoma.
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753449842_24369
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Medulloblastoma (MB) is one of the most prevalent pediatric brain malignancies and makes up approximately 20% of all primary brain tumors in children. Current treatment options are not curative for approximately 30% of patients and leave survivors with an impaired quality of life. Immune checkpoint inhibition can offer a novel targeted therapy but largely remains understudied in MB. The aim of this study was to determine whether dual immune checkpoint inhibition can be used as a novel targeted therapy in MB.We utilized single cell and single nuclei sequencing datasets of primary MB tumors, established Group 3 and Sonic Hedgehog MB cell lines and MB patient-derived xenograft (PDX) organoid models, and primary patient-derived MB tissue of all subtypes to study immune checkpoints and their blockade to target MB.We identified the expression of immune checkpoint protein CD155 on MB tumor cells and the expression of its inhibitory binding partner TIGIT on immune cells of MB patient-derived tissues, cell lines, and PDX MB organoids. In addition, while MB shows weak, if any, PD-L1 protein expression, we found that MB cells can upregulate PD-L1 expression upon stimulation by natural killer (NK) cells or interferon-γ as a putative immune evasive strategy. Subsequent immunotherapeutic interventions with FDA-approved antibodies Tiragolumab (anti-TIGIT), Durvalumab (anti-PD-1), and their combination potentiated primary NK cell activation and killing of MB cell lines and PDX-derived MB organoids.These data propose a translatable and novel immunotherapeutic strategy for children diagnosed with subgroups Sonic Hedgehog and Group 3 MB.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a CD155/TIGIT
|2 Other
650 _ 7 |a PD-L1/PD-1
|2 Other
650 _ 7 |a immune checkpoints
|2 Other
650 _ 7 |a medulloblastoma
|2 Other
650 _ 7 |a organoids
|2 Other
700 1 _ |a Schakelaar, Michael Y
|b 1
700 1 _ |a Meulenbroeks, Chris
|b 2
700 1 _ |a Quist, Matthias
|b 3
700 1 _ |a Perzolli, Alicia
|b 4
700 1 _ |a Selten, Aimee
|b 5
700 1 _ |a Koster, Celeste J M
|b 6
700 1 _ |a Maassen, Daniëlle S C
|b 7
700 1 _ |a Montoro Canelo, Alba
|b 8
700 1 _ |a Fredriks, Maureen
|b 9
700 1 _ |a Koppers, Myrthe J A
|b 10
700 1 _ |a Clevers, Kim
|b 11
700 1 _ |a Klein, Julia
|b 12
700 1 _ |a Kaludjerovic, Vela
|b 13
700 1 _ |a Meeldijk, Jan
|b 14
700 1 _ |a Pijnappel, Emma W
|b 15
700 1 _ |a Rebel, Heggert G
|b 16
700 1 _ |a van Kempen, Sven
|b 17
700 1 _ |a Crnko, Sandra
|b 18
700 1 _ |a Koorman, Thijs
|b 19
700 1 _ |a Federico, Aniello
|b 20
700 1 _ |a Valzano, Francesco
|b 21
700 1 _ |a Wesseling, Pieter
|b 22
700 1 _ |a Calkoen, Friso G J
|b 23
700 1 _ |a van der Lugt, Jasper
|b 24
700 1 _ |a Ten Broeke, Toine
|b 25
700 1 _ |a Kool, Marcel
|0 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
|b 26
|u dkfz
700 1 _ |a Bovenschen, Niels
|b 27
773 _ _ |a 10.1093/noajnl/vdaf099
|g Vol. 7, no. 1, p. vdaf099
|0 PERI:(DE-600)3009682-0
|n 1
|p vdaf099
|t Neuro-oncology advances
|v 7
|y 2025
|x 2632-2498
909 C O |o oai:inrepo02.dkfz.de:303120
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 26
|6 P:(DE-He78)4c28e2aade5f44d8eca9dd8e97638ec8
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOL ADV : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:37:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:37:56Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:37:56Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21