000303193 001__ 303193
000303193 005__ 20250819100257.0
000303193 0247_ $$2doi$$a10.1073/pnas.2422678122
000303193 0247_ $$2pmid$$apmid:40711920
000303193 0247_ $$2ISSN$$a0027-8424
000303193 0247_ $$2ISSN$$a1091-6490
000303193 037__ $$aDKFZ-2025-01544
000303193 041__ $$aEnglish
000303193 082__ $$a500
000303193 1001_ $$aTill, Katharina$$b0
000303193 245__ $$aTrigger factor accelerates nascent chain compaction and folding.
000303193 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2025
000303193 3367_ $$2DRIVER$$aarticle
000303193 3367_ $$2DataCite$$aOutput Types/Journal article
000303193 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755590553_6401
000303193 3367_ $$2BibTeX$$aARTICLE
000303193 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000303193 3367_ $$00$$2EndNote$$aJournal Article
000303193 500__ $$aDKFZ-ZMBH Alliance
000303193 520__ $$aConformational control of nascent chains is poorly understood. Chaperones are known to stabilize, unfold, and disaggregate polypeptides away from the ribosome. In comparison, much less is known about the elementary conformational control mechanisms at the ribosome. Yet, proteins encounter major folding and aggregation challenges during translation. Here, using selective ribosome profiling and optical tweezers with correlated single-molecule fluorescence, with dihydrofolate reductase (DHFR) as a model system, we show that the Escherichia coli chaperone trigger factor (TF) accelerates nascent chain folding. TF scans nascent chains by transient binding events, and then locks into a stable binding mode as the chain collapses and folds. This interplay is reciprocal: TF binding collapses nascent chains and stabilizes partial folds, while nascent chain compaction prolongs TF binding. Ongoing translation controls these cooperative effects, with TF-accelerated folding depending on the emergence of a peptide segment that is central to the core DHFR beta-sheet. The folding acceleration we report here impacts processes that depend on folding occurring cotranslationally, including cotranslational protein assembly, protein aggregation, and translational pausing, and may be relevant to other domains of life.
000303193 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000303193 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000303193 650_7 $$2Other$$achaperones
000303193 650_7 $$2Other$$aoptical tweezers
000303193 650_7 $$2Other$$aprotein folding
000303193 650_7 $$2Other$$aribosomes
000303193 650_7 $$2NLM Chemicals$$aEscherichia coli Proteins
000303193 650_7 $$0EC 1.5.1.3$$2NLM Chemicals$$aTetrahydrofolate Dehydrogenase
000303193 650_7 $$0EC 5.2.1.-$$2NLM Chemicals$$atrigger factor, E coli
000303193 650_7 $$0EC 5.2.1.8$$2NLM Chemicals$$aPeptidylprolyl Isomerase
000303193 650_7 $$2NLM Chemicals$$aMolecular Chaperones
000303193 650_2 $$2MeSH$$aProtein Folding
000303193 650_2 $$2MeSH$$aEscherichia coli Proteins: metabolism
000303193 650_2 $$2MeSH$$aEscherichia coli Proteins: chemistry
000303193 650_2 $$2MeSH$$aTetrahydrofolate Dehydrogenase: metabolism
000303193 650_2 $$2MeSH$$aTetrahydrofolate Dehydrogenase: chemistry
000303193 650_2 $$2MeSH$$aEscherichia coli: metabolism
000303193 650_2 $$2MeSH$$aRibosomes: metabolism
000303193 650_2 $$2MeSH$$aPeptidylprolyl Isomerase: metabolism
000303193 650_2 $$2MeSH$$aProtein Biosynthesis
000303193 650_2 $$2MeSH$$aMolecular Chaperones: metabolism
000303193 650_2 $$2MeSH$$aProtein Binding
000303193 7001_ $$00000-0003-4644-7732$$aSeinen, Anne-Bart$$b1
000303193 7001_ $$aWruck, Florian$$b2
000303193 7001_ $$aSunderlikova, Vanda$$b3
000303193 7001_ $$0P:(DE-He78)379b02b83ca85bcfe4c4aecf5e8c6272$$aGalmozzi, Carla$$b4
000303193 7001_ $$00000-0002-1785-1659$$aKatranidis, Alexandros$$b5
000303193 7001_ $$0P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476$$aBukau, Bernd$$b6$$udkfz
000303193 7001_ $$0P:(DE-He78)8b9aa336210db1592efa7400628e5a46$$aKramer, Günter$$b7
000303193 7001_ $$00000-0002-7131-2568$$aTans, Sander J$$b8
000303193 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2422678122$$gVol. 122, no. 30, p. e2422678122$$n30$$pe2422678122$$tProceedings of the National Academy of Sciences of the United States of America$$v122$$x0027-8424$$y2025
000303193 909CO $$ooai:inrepo02.dkfz.de:303193$$pVDB
000303193 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)379b02b83ca85bcfe4c4aecf5e8c6272$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000303193 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)9d539bc25fa8f4ff093b6f6e10d39476$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000303193 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8b9aa336210db1592efa7400628e5a46$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000303193 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000303193 9141_ $$y2025
000303193 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
000303193 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
000303193 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
000303193 9201_ $$0I:(DE-He78)Z999-20160331$$kZ999$$lErimitus im DKFZ$$x0
000303193 9201_ $$0I:(DE-He78)A250-20160331$$kA250$$lA250 Chaperone und Proteasen$$x1
000303193 980__ $$ajournal
000303193 980__ $$aVDB
000303193 980__ $$aI:(DE-He78)Z999-20160331
000303193 980__ $$aI:(DE-He78)A250-20160331
000303193 980__ $$aUNRESTRICTED