000303195 001__ 303195
000303195 005__ 20250729114242.0
000303195 0247_ $$2doi$$a10.3390/jimaging11070215
000303195 0247_ $$2pmid$$apmid:40710602
000303195 037__ $$aDKFZ-2025-01546
000303195 041__ $$aEnglish
000303195 082__ $$a004
000303195 1001_ $$aRuetters, Maurice$$b0
000303195 245__ $$aOpportunistic Diagnostics of Dental Implants in Routine Clinical Photon-Counting CT Acquisitions.
000303195 260__ $$aBasel$$bMDPI$$c2025
000303195 3367_ $$2DRIVER$$aarticle
000303195 3367_ $$2DataCite$$aOutput Types/Journal article
000303195 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753700636_15875
000303195 3367_ $$2BibTeX$$aARTICLE
000303195 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000303195 3367_ $$00$$2EndNote$$aJournal Article
000303195 500__ $$a#LA:E025#
000303195 520__ $$aTwo-dimensional imaging is still commonly used in dentistry, but does not provide the three-dimensional information often required for the accurate assessment of dental structures. Photon-counting computed tomography (PCCT), a new three-dimensional modality mainly used in general medicine, has shown promising potential for dental applications. With growing digitalization and cross-disciplinary integration, using PCCT data from other medical fields is becoming increasingly relevant. Conventional CT scans, such as those of the cervical spine, have so far lacked the resolution to reliably evaluate dental structures or implants. This study evaluates the diagnostic utility of PCCT for visualizing peri-implant structures in routine clinical photon-counting CT acquisitions and assesses the influence of metal artifact reduction (MAR) algorithms on image quality. Ten dental implants were retrospectively included in this IRB-approved study. Standard PCCT scans were reconstructed at multiple keV levels with and without MAR. Quantitative image analysis was performed with respect to contrast and image noise. Qualitative evaluation of peri-implant tissues, implant shoulder, and apex was performed independently by two experienced dental professionals using a five-point Likert scale. Inter-reader agreement was measured using intraclass correlation coefficients (ICCs). PCCT enabled high-resolution imaging of all peri-implant regions with excellent inter-reader agreement (ICC > 0.75 for all structures). Non-MAR reconstructions consistently outperformed MAR reconstructions across all evaluated regions. MAR led to reduced clarity, particularly in immediate peri-implant areas, without significant benefit from energy level adjustments. All imaging protocols were deemed diagnostically acceptable. This is the first in vivo study demonstrating the feasibility of opportunistic dental diagnostics using PCCT in a clinical setting. While MAR reduces peripheral artifacts, it adversely affects image clarity near implants. PCCT offers excellent image quality for peri-implant assessments and enables incidental detection of dental pathologies without additional radiation exposure. PCCT opens new possibilities for opportunistic, three-dimensional dental diagnostics during non-dental CT scans, potentially enabling earlier detection of clinically significant pathologies.
000303195 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000303195 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000303195 650_7 $$2Other$$aX-ray computed
000303195 650_7 $$2Other$$adental
000303195 650_7 $$2Other$$adental implants
000303195 650_7 $$2Other$$aincidental findings
000303195 650_7 $$2Other$$aradiography
000303195 650_7 $$2Other$$atomography
000303195 7001_ $$aGehrig, Holger$$b1
000303195 7001_ $$00000-0002-6305-364X$$aMertens, Christian$$b2
000303195 7001_ $$00000-0001-5907-5398$$aSen, Sinan$$b3
000303195 7001_ $$aKim, Ti-Sun$$b4
000303195 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b5$$udkfz
000303195 7001_ $$0P:(DE-He78)a56941777fbaf0ca1008366e7e16667f$$aZiener, Christian$$b6$$udkfz
000303195 7001_ $$aSchoenberg, Stefan$$b7
000303195 7001_ $$00000-0001-8501-2147$$aFroelich, Matthias$$b8
000303195 7001_ $$0P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aKachelrieß, Marc$$b9$$udkfz
000303195 7001_ $$0P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aSawall, Stefan$$b10$$eLast author$$udkfz
000303195 773__ $$0PERI:(DE-600)2824270-1$$a10.3390/jimaging11070215$$gVol. 11, no. 7, p. 215 -$$n7$$p215$$tJournal of imaging$$v11$$x2313-433X$$y2025
000303195 909CO $$ooai:inrepo02.dkfz.de:303195$$pVDB
000303195 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000303195 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a56941777fbaf0ca1008366e7e16667f$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000303195 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f288a8f92f092ddb41d52b1aeb915323$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000303195 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)14909c75431f33f953a7ab4ad3bd7d51$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000303195 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000303195 9141_ $$y2025
000303195 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ IMAGING : 2022$$d2024-12-30
000303195 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-30
000303195 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-30
000303195 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:27:02Z
000303195 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:27:02Z
000303195 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:27:02Z
000303195 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-04-10T15:27:02Z
000303195 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-30
000303195 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-30
000303195 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-30
000303195 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-30
000303195 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-30
000303195 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-30
000303195 9202_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x0
000303195 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000303195 9201_ $$0I:(DE-He78)E025-20160331$$kE025$$lE025 Röntgenbildgebung und Computertomographie$$x1
000303195 980__ $$ajournal
000303195 980__ $$aVDB
000303195 980__ $$aI:(DE-He78)E010-20160331
000303195 980__ $$aI:(DE-He78)E025-20160331
000303195 980__ $$aUNRESTRICTED