000303199 001__ 303199
000303199 005__ 20250803021835.0
000303199 0247_ $$2doi$$a10.1038/s42256-025-01052-4
000303199 0247_ $$2pmid$$apmid:40709098
000303199 0247_ $$2pmc$$apmc:PMC12283373
000303199 0247_ $$2altmetric$$aaltmetric:179559922
000303199 037__ $$aDKFZ-2025-01550
000303199 041__ $$aEnglish
000303199 082__ $$a004
000303199 1001_ $$aIng, Alex$$b0
000303199 245__ $$aIntegrating multimodal cancer data using deep latent variable path modelling.
000303199 260__ $$a[London]$$bSpringer Nature Publishing$$c2025
000303199 3367_ $$2DRIVER$$aarticle
000303199 3367_ $$2DataCite$$aOutput Types/Journal article
000303199 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753700529_15878
000303199 3367_ $$2BibTeX$$aARTICLE
000303199 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000303199 3367_ $$00$$2EndNote$$aJournal Article
000303199 500__ $$a#LA:B480#
000303199 520__ $$aCancers are commonly characterized by a complex pathology encompassing genetic, microscopic and macroscopic features, which can be probed individually using imaging and omics technologies. Integrating these data to obtain a full understanding of pathology remains challenging. We introduce a method called deep latent variable path modelling, which combines the representational power of deep learning with the capacity of path modelling to identify relationships between interacting elements in a complex system. To evaluate the capabilities of deep latent variable path modelling, we initially trained a model to map dependencies between single-nucleotide variant, methylation profiles, microRNA sequencing, RNA sequencing and histological data using breast cancer data from The Cancer Genome Atlas. This method exhibited superior performance in mapping associations between data types compared with classical path modelling. We additionally performed successful applications of the model to stratify single-cell data, identify synthetic lethal interactions using CRISPR-Cas9 screens derived from cell lines and detect histologic-transcriptional associations using spatial transcriptomic data. Results from each of these data types can then be understood with reference to the same holistic model of illness.
000303199 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000303199 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000303199 650_7 $$2Other$$aBreast cancer
000303199 650_7 $$2Other$$aComputer science
000303199 650_7 $$2Other$$aData integration
000303199 650_7 $$2Other$$aMachine learning
000303199 7001_ $$aAndrades, Alvaro$$b1
000303199 7001_ $$aCosenza, Marco Raffaele$$b2
000303199 7001_ $$0P:(DE-He78)372b77c2acf8604690a6a325a4e89287$$aKorbel, Jan$$b3$$eLast author$$udkfz
000303199 773__ $$0PERI:(DE-600)2933875-X$$a10.1038/s42256-025-01052-4$$gVol. 7, no. 7, p. 1053 - 1075$$n7$$p1053 - 1075$$tNature machine intelligence$$v7$$x2522-5839$$y2025
000303199 909CO $$ooai:inrepo02.dkfz.de:303199$$pVDB
000303199 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)372b77c2acf8604690a6a325a4e89287$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000303199 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000303199 9141_ $$y2025
000303199 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2024-12-05$$wger
000303199 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT MACH INTELL : 2022$$d2024-12-05
000303199 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
000303199 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
000303199 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
000303199 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-05
000303199 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
000303199 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
000303199 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
000303199 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT MACH INTELL : 2022$$d2024-12-05
000303199 9202_ $$0I:(DE-He78)B480-20160331$$kB480$$lMechanismen der genetischen Variation und Datenwissenschaft$$x0
000303199 9201_ $$0I:(DE-He78)B480-20160331$$kB480$$lMechanismen der genetischen Variation und Datenwissenschaft$$x0
000303199 980__ $$ajournal
000303199 980__ $$aVDB
000303199 980__ $$aI:(DE-He78)B480-20160331
000303199 980__ $$aUNRESTRICTED