001     303199
005     20250803021835.0
024 7 _ |a 10.1038/s42256-025-01052-4
|2 doi
024 7 _ |a pmid:40709098
|2 pmid
024 7 _ |a pmc:PMC12283373
|2 pmc
024 7 _ |a altmetric:179559922
|2 altmetric
037 _ _ |a DKFZ-2025-01550
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Ing, Alex
|b 0
245 _ _ |a Integrating multimodal cancer data using deep latent variable path modelling.
260 _ _ |a [London]
|c 2025
|b Springer Nature Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1753700529_15878
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:B480#
520 _ _ |a Cancers are commonly characterized by a complex pathology encompassing genetic, microscopic and macroscopic features, which can be probed individually using imaging and omics technologies. Integrating these data to obtain a full understanding of pathology remains challenging. We introduce a method called deep latent variable path modelling, which combines the representational power of deep learning with the capacity of path modelling to identify relationships between interacting elements in a complex system. To evaluate the capabilities of deep latent variable path modelling, we initially trained a model to map dependencies between single-nucleotide variant, methylation profiles, microRNA sequencing, RNA sequencing and histological data using breast cancer data from The Cancer Genome Atlas. This method exhibited superior performance in mapping associations between data types compared with classical path modelling. We additionally performed successful applications of the model to stratify single-cell data, identify synthetic lethal interactions using CRISPR-Cas9 screens derived from cell lines and detect histologic-transcriptional associations using spatial transcriptomic data. Results from each of these data types can then be understood with reference to the same holistic model of illness.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Breast cancer
|2 Other
650 _ 7 |a Computer science
|2 Other
650 _ 7 |a Data integration
|2 Other
650 _ 7 |a Machine learning
|2 Other
700 1 _ |a Andrades, Alvaro
|b 1
700 1 _ |a Cosenza, Marco Raffaele
|b 2
700 1 _ |a Korbel, Jan
|0 P:(DE-He78)372b77c2acf8604690a6a325a4e89287
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.1038/s42256-025-01052-4
|g Vol. 7, no. 7, p. 1053 - 1075
|0 PERI:(DE-600)2933875-X
|n 7
|p 1053 - 1075
|t Nature machine intelligence
|v 7
|y 2025
|x 2522-5839
909 C O |o oai:inrepo02.dkfz.de:303199
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)372b77c2acf8604690a6a325a4e89287
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MACH INTELL : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT MACH INTELL : 2022
|d 2024-12-05
920 2 _ |0 I:(DE-He78)B480-20160331
|k B480
|l Mechanismen der genetischen Variation und Datenwissenschaft
|x 0
920 1 _ |0 I:(DE-He78)B480-20160331
|k B480
|l Mechanismen der genetischen Variation und Datenwissenschaft
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B480-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21