001     303249
005     20250803021928.0
024 7 _ |a 10.1038/s41467-025-62220-z
|2 doi
024 7 _ |a pmid:40745156
|2 pmid
024 7 _ |a altmetric:179850624
|2 altmetric
037 _ _ |a DKFZ-2025-01594
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Guo, Wei
|0 0009-0009-1463-3099
|b 0
245 _ _ |a Queuosine is incorporated into precursor tRNA before splicing.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754055214_19096
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a DKFZ-ZMBH Alliance
520 _ _ |a Each newly transcribed tRNA molecule must undergo processing and receive modifications to become functional. Queuosine (Q) is a tRNA modification present at position 34 of four tRNAs with 'GUN' anticodons. Among these, the precursor of tRNATyr carries an intronic sequence within the anticodon loop that is removed by an essential non-canonical splicing event. The functional and temporal coupling between tRNA-splicing and Q-incorporation remains elusive. Here, we demonstrate in vitro and in vivo that intron-containing precursors of tRNATyr are modified with Q or with the Q-derivative galactosyl-queuosine (galQ) before being spliced. We show that this order of events is conserved in mouse, human, flies and worms. Using single particle cryo-EM, we confirm that pre-tRNATyr is a bona fide substrate of the QTRT1/2 complex, which catalyzes the incorporation of Q into the tRNA. Our results elucidate the hierarchical interplay that coordinates Q-incorporation and splicing in eukaryotic tRNAs, providing a relevant but unappreciated aspect of the cellular tRNA maturation process.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Nucleoside Q
|0 57072-36-3
|2 NLM Chemicals
650 _ 7 |a RNA Precursors
|2 NLM Chemicals
650 _ 7 |a RNA, Transfer
|0 9014-25-9
|2 NLM Chemicals
650 _ 7 |a Anticodon
|2 NLM Chemicals
650 _ 7 |a Pentosyltransferases
|0 EC 2.4.2.-
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a RNA Splicing
|2 MeSH
650 _ 2 |a Nucleoside Q: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a RNA Precursors: metabolism
|2 MeSH
650 _ 2 |a RNA Precursors: genetics
|2 MeSH
650 _ 2 |a RNA, Transfer: metabolism
|2 MeSH
650 _ 2 |a RNA, Transfer: genetics
|2 MeSH
650 _ 2 |a Cryoelectron Microscopy
|2 MeSH
650 _ 2 |a Introns: genetics
|2 MeSH
650 _ 2 |a Anticodon: genetics
|2 MeSH
650 _ 2 |a Caenorhabditis elegans: genetics
|2 MeSH
650 _ 2 |a Pentosyltransferases: metabolism
|2 MeSH
700 1 _ |a Kaczmarczyk, Igor
|0 0000-0002-5607-7416
|b 1
700 1 _ |a Kopietz, Kevin
|0 0009-0007-0423-4049
|b 2
700 1 _ |a Flegler, Florian
|b 3
700 1 _ |a Russo, Stefano
|0 0000-0001-7539-0427
|b 4
700 1 _ |a Cigirgan, Ege
|b 5
700 1 _ |a Chramiec-Głąbik, Andrzej
|b 6
700 1 _ |a Koziej, Łukasz
|0 0000-0003-3885-3845
|b 7
700 1 _ |a Cirzi, Cansu
|0 P:(DE-He78)20f58a8a4fd3f952730ed9580f66f7fc
|b 8
700 1 _ |a Peschek, Jirka
|0 0000-0001-8158-9301
|b 9
700 1 _ |a Reuter, Klaus
|b 10
700 1 _ |a Helm, Mark
|0 0000-0002-0154-0928
|b 11
700 1 _ |a Glatt, Sebastian
|0 0000-0003-2815-7133
|b 12
700 1 _ |a Tuorto, Francesca
|b 13
773 _ _ |a 10.1038/s41467-025-62220-z
|g Vol. 16, no. 1, p. 7044
|0 PERI:(DE-600)2553671-0
|n 1
|p 7044
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
909 C O |o oai:inrepo02.dkfz.de:303249
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)20f58a8a4fd3f952730ed9580f66f7fc
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
920 1 _ |0 I:(DE-He78)A130-20160331
|k A130
|l A130 Epigenetik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A130-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21