001     303360
005     20250804114347.0
024 7 _ |a 10.1038/s41698-025-01064-8
|2 doi
024 7 _ |a pmid:40751074
|2 pmid
024 7 _ |a pmc:PMC12317078
|2 pmc
037 _ _ |a DKFZ-2025-01610
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rong, Chao
|b 0
245 _ _ |a Integrative bioinformatics analysis and experimental validation identify CHEK1 as an unfavorable prognostic biomarker related to immunosuppressive phenotypes in soft tissue sarcomas.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754299940_1784
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Soft tissue sarcomas (STS), including rhabdomyosarcoma (RMS), exhibit significant heterogeneity and limited responsiveness to immune checkpoint blockade (ICB). Unsupervised tumor immune phenotype based on multi-omics expression profiling of STS has been less studied. To reveal the tumor immune phenotype of STS and identify promising therapeutic targets, multi-omics expression profiling across various subtypes of STS was investigated. Here, we established a novel molecular classifier based on immune cell subsets related to TGFβ1 and IFNγ to identify distinct immune phenotypes with higher or lower cytotoxic contents. Immune-high clusters demonstrated enriched immune cell infiltration, elevated IFNγ-related signatures, and favorable clinical outcomes. In contrast, immune-low clusters were enriched for immunosuppressive cell types and exhibited poor survival. CHEK1 emerged as a key node associated with immunosuppressive phenotypes and was significantly overexpressed in immune-low tumors. In situ analysis of independent validation cohorts revealed the significant correlation between CHEK1 and tumor-infiltrating immune cells. Collectively, our findings establish a novel risk assessment strategy for RMS and STS patients, and highlight the potential of CHEK1 as a promising therapeutic target in combination with immune checkpoint inhibitor therapy.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Liu, Yun
|b 1
700 1 _ |a Xiang, Fang
|b 2
700 1 _ |a Zhao, Xin
|b 3
700 1 _ |a Zhang, Jinjin
|b 4
700 1 _ |a Xiao, Zuorun
|b 5
700 1 _ |a Wang, Jinsha
|b 6
700 1 _ |a Chen, Lin
|b 7
700 1 _ |a Guo, Zhiqi
|b 8
700 1 _ |a Zhang, Ziyu
|b 9
700 1 _ |a An, Jingnan
|b 10
700 1 _ |a Shen, Jing
|b 11
700 1 _ |a Hess, Jochen
|0 P:(DE-He78)2e5f34f1c58eda4787a14c9dc139ca5f
|b 12
|u dkfz
700 1 _ |a Yuan, Xiaodong
|b 13
700 1 _ |a Zhang, Qiong
|b 14
700 1 _ |a Wang, Shouli
|b 15
773 _ _ |a 10.1038/s41698-025-01064-8
|g Vol. 9, no. 1, p. 268
|0 PERI:(DE-600)2891458-2
|n 1
|p 268
|t npj precision oncology
|v 9
|y 2025
|x 2397-768X
909 C O |o oai:inrepo02.dkfz.de:303360
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)2e5f34f1c58eda4787a14c9dc139ca5f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NPJ PRECIS ONCOL : 2022
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:43:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:43:48Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-10T15:43:48Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-04-10T15:43:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NPJ PRECIS ONCOL : 2022
|d 2024-12-30
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-30
920 1 _ |0 I:(DE-He78)E221-20160331
|k E221
|l Molekulare Grundlagen von HNO-Tumoren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E221-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21