000303374 001__ 303374
000303374 005__ 20250807114414.0
000303374 0247_ $$2doi$$a10.1007/s10334-025-01287-7
000303374 0247_ $$2pmid$$apmid:40759812
000303374 0247_ $$2ISSN$$a0968-5243
000303374 0247_ $$2ISSN$$a1352-8661
000303374 037__ $$aDKFZ-2025-01623
000303374 041__ $$aEnglish
000303374 082__ $$a530
000303374 1001_ $$0P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aOrzada, Stephan$$b0$$eFirst author$$udkfz
000303374 245__ $$aOn the measurement errors in SAR supervision introduced by directional couplers.
000303374 260__ $$aHeidelberg$$bSpringer$$c2025
000303374 3367_ $$2DRIVER$$aarticle
000303374 3367_ $$2DataCite$$aOutput Types/Journal article
000303374 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1754484534_17601
000303374 3367_ $$2BibTeX$$aARTICLE
000303374 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000303374 3367_ $$00$$2EndNote$$aJournal Article
000303374 500__ $$a#EA:E020#LA:E020# / epub
000303374 520__ $$aThis study proposes a framework for determining the calculation error in online SAR supervision introduced by directional couplers.A mathematical framework is introduced showing how the error in the measured excitation vector compared to the actual excitation vector can be rewritten as a new set of virtual observation points (VOPs). By comparing the new set of VOPs to the original VOPs through an optimization, the maximum underestimation of SAR can be calculated. The framework is then applied to five different RF arrays.The results show that the error in SAR calculation is very dependent on the position of the reference plane of the directional coupler measurements and the S-parameters of the array. To have an error of less than 5%, directional couplers with a directivity better than 40 dB are necessary for the worst case of the investigated arrays.The framework presented in this paper provides an approach for calculating a safety factor to account for the inaccuracies introduced by directional coupler measurements in online SAR supervision. The framework can also be adapted to other types of measurements.
000303374 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000303374 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000303374 650_7 $$2Other$$aDirectional couplers
000303374 650_7 $$2Other$$aMRI
000303374 650_7 $$2Other$$aMeasurement error
000303374 650_7 $$2Other$$aSAR
000303374 650_7 $$2Other$$aVirtual observation points
000303374 650_7 $$2Other$$apTx
000303374 7001_ $$0P:(DE-He78)bcbe9862276365dd99a98b48449fd046$$aFiedler, Thomas M$$b1$$udkfz
000303374 7001_ $$0P:(DE-He78)78654e96b8b327c11b6464f38431c40f$$aKesting, Jan$$b2$$udkfz
000303374 7001_ $$aHubmann, Max Joris$$b3
000303374 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b4$$eLast author$$udkfz
000303374 773__ $$0PERI:(DE-600)1502491-X$$a10.1007/s10334-025-01287-7$$pnn$$tMagnetic resonance materials in physics, biology and medicine$$vnn$$x0968-5243$$y2025
000303374 909CO $$ooai:inrepo02.dkfz.de:303374$$pVDB
000303374 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000303374 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bcbe9862276365dd99a98b48449fd046$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000303374 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)78654e96b8b327c11b6464f38431c40f$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000303374 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000303374 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000303374 9141_ $$y2025
000303374 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-01$$wger
000303374 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2025-01-01$$wger
000303374 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MATER PHY : 2022$$d2025-01-01
000303374 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000303374 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000303374 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000303374 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000303374 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-01
000303374 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000303374 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000303374 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
000303374 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000303374 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000303374 9200_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000303374 980__ $$ajournal
000303374 980__ $$aVDB
000303374 980__ $$aI:(DE-He78)E020-20160331
000303374 980__ $$aUNRESTRICTED