001     303376
005     20250807114414.0
024 7 _ |a 10.1038/s41598-025-08808-3
|2 doi
024 7 _ |a pmid:40759673
|2 pmid
037 _ _ |a DKFZ-2025-01625
041 _ _ |a English
082 _ _ |a 600
100 1 _ |a Korshevniuk, Maryna
|b 0
245 _ _ |a Optimized summary-statistic-based single-cell eQTL meta-analysis.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754484504_17601
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The identification of expression quantitative trait loci (eQTLs) holds great potential to improve the interpretation of disease-associated genetic variation. As many such disease-associated variants act in a context-, tissue- or even cell-type-specific manner, single-cell RNA-sequencing (scRNA-seq) data is uniquely suitable for identifying the specific cell type or context in which these genetic variants act. However, due to the limited sample sizes in single-cell studies, discovery of cell-type-specific eQTLs is now limited. To improve power to detect such eQTLs, large-scale joint analyses are needed. These are however, complicated by privacy constraints due to sharing of genotype data and the measurement and technical variety across different scRNA-seq datasets as a result of differences in mRNA capture efficiency, experimental protocols, and sequencing strategies. A solution to these issues is a federated weighted meta-analysis (WMA) approach in which summary statistics are integrated using dataset-specific weights. Here, we compare different strategies and provide best practice recommendations for eQTL WMA across scRNA-seq datasets.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Weighted meta-analysis
|2 Other
650 _ 7 |a eQTL
|2 Other
650 _ 7 |a scRNA-seq
|2 Other
650 _ 2 |a Quantitative Trait Loci
|2 MeSH
650 _ 2 |a Single-Cell Analysis: methods
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Sequence Analysis, RNA
|2 MeSH
700 1 _ |a Westra, Harm-Jan
|b 1
700 1 _ |a Oelen, Roy
|b 2
700 1 _ |a van der Wijst, Monique G P
|b 3
700 1 _ |a Franke, Lude
|b 4
700 1 _ |a Bonder, Marc Jan
|0 P:(DE-He78)ed3a2ed903bfbc6b0c33ef7009b141ce
|b 5
700 1 _ |a Consortium, sc-eQTLGen
|b 6
|e Collaboration Author
700 1 _ |a Alquicira-Hernández, José
|b 7
|e Contributor
700 1 _ |a Kaptijn, Daniel
|b 8
|e Contributor
700 1 _ |a Korshevniuk, Maryna
|b 9
|e Contributor
700 1 _ |a Lee, Jimmy Tsz Hang
|b 10
|e Contributor
700 1 _ |a Michielsen, Lieke
|b 11
|e Contributor
700 1 _ |a Neavin, Drew
|b 12
|e Contributor
700 1 _ |a Oelen, Roy
|b 13
|e Contributor
700 1 _ |a Ripoll-Cladellas, Aida
|b 14
|e Contributor
700 1 _ |a Vochterloo, Martijn
|b 15
|e Contributor
700 1 _ |a Ando, Yoshinari
|b 16
|e Contributor
700 1 _ |a Bayaraa, Odmaa
|b 17
|e Contributor
700 1 _ |a van Blokland, Irene
|b 18
|e Contributor
700 1 _ |a Dieng, Mame M
|b 19
|e Contributor
700 1 _ |a Gordon, M Grace
|b 20
|e Contributor
700 1 _ |a Groot, Hilde E
|b 21
|e Contributor
700 1 _ |a van der Harst, Pim
|b 22
|e Contributor
700 1 _ |a Hon, Chung-Chau
|b 23
|e Contributor
700 1 _ |a Idaghdour, Youssef
|b 24
|e Contributor
700 1 _ |a Manikanda, Vinu
|b 25
|e Contributor
700 1 _ |a Moody, Jonathan
|b 26
|e Contributor
700 1 _ |a Nawijn, Martijn C
|b 27
|e Contributor
700 1 _ |a Okada, Yukinori
|b 28
|e Contributor
700 1 _ |a Stegle, Oliver
|0 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3
|b 29
|e Contributor
|u dkfz
700 1 _ |a Park, Woong-Yang
|b 30
|e Contributor
700 1 _ |a Rajagopalan, Deepa
|b 31
|e Contributor
700 1 _ |a Shahin, Tala
|b 32
|e Contributor
700 1 _ |a Shin, Jay W
|b 33
|e Contributor
700 1 _ |a Trynka, Gosia
|b 34
|e Contributor
700 1 _ |a Westra, Harm-Jan
|b 35
|e Contributor
700 1 _ |a Yazar, Seyhan
|b 36
|e Contributor
700 1 _ |a Ye, Jimmie
|b 37
|e Contributor
700 1 _ |a Hemberg, Martin
|b 38
|e Contributor
700 1 _ |a Mahfouz, Ahmed
|b 39
|e Contributor
700 1 _ |a Melé, Marta
|b 40
|e Contributor
700 1 _ |a Powell, Joseph E
|b 41
|e Contributor
700 1 _ |a Franke, Lude
|b 42
|e Contributor
700 1 _ |a van der Wijst, Monique G P
|b 43
|e Contributor
700 1 _ |a Bonder, Marc Jan
|b 44
|e Contributor
773 _ _ |a 10.1038/s41598-025-08808-3
|g Vol. 15, no. 1, p. 28407
|0 PERI:(DE-600)2615211-3
|n 1
|p 28407
|t Scientific reports
|v 15
|y 2025
|x 2045-2322
909 C O |o oai:inrepo02.dkfz.de:303376
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)ed3a2ed903bfbc6b0c33ef7009b141ce
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 29
|6 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2022
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-07-29T15:28:26Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-07-29T15:28:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-18
920 1 _ |0 I:(DE-He78)B260-20160331
|k B260
|l B260 Bioinformatik der Genomik und Systemgenetik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B260-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21