Home > Publications database > Optimized summary-statistic-based single-cell eQTL meta-analysis. > print |
001 | 303376 | ||
005 | 20250807114414.0 | ||
024 | 7 | _ | |a 10.1038/s41598-025-08808-3 |2 doi |
024 | 7 | _ | |a pmid:40759673 |2 pmid |
037 | _ | _ | |a DKFZ-2025-01625 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |a Korshevniuk, Maryna |b 0 |
245 | _ | _ | |a Optimized summary-statistic-based single-cell eQTL meta-analysis. |
260 | _ | _ | |a [London] |c 2025 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1754484504_17601 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The identification of expression quantitative trait loci (eQTLs) holds great potential to improve the interpretation of disease-associated genetic variation. As many such disease-associated variants act in a context-, tissue- or even cell-type-specific manner, single-cell RNA-sequencing (scRNA-seq) data is uniquely suitable for identifying the specific cell type or context in which these genetic variants act. However, due to the limited sample sizes in single-cell studies, discovery of cell-type-specific eQTLs is now limited. To improve power to detect such eQTLs, large-scale joint analyses are needed. These are however, complicated by privacy constraints due to sharing of genotype data and the measurement and technical variety across different scRNA-seq datasets as a result of differences in mRNA capture efficiency, experimental protocols, and sequencing strategies. A solution to these issues is a federated weighted meta-analysis (WMA) approach in which summary statistics are integrated using dataset-specific weights. Here, we compare different strategies and provide best practice recommendations for eQTL WMA across scRNA-seq datasets. |
536 | _ | _ | |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312) |0 G:(DE-HGF)POF4-312 |c POF4-312 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Weighted meta-analysis |2 Other |
650 | _ | 7 | |a eQTL |2 Other |
650 | _ | 7 | |a scRNA-seq |2 Other |
650 | _ | 2 | |a Quantitative Trait Loci |2 MeSH |
650 | _ | 2 | |a Single-Cell Analysis: methods |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Sequence Analysis, RNA |2 MeSH |
700 | 1 | _ | |a Westra, Harm-Jan |b 1 |
700 | 1 | _ | |a Oelen, Roy |b 2 |
700 | 1 | _ | |a van der Wijst, Monique G P |b 3 |
700 | 1 | _ | |a Franke, Lude |b 4 |
700 | 1 | _ | |a Bonder, Marc Jan |0 P:(DE-He78)ed3a2ed903bfbc6b0c33ef7009b141ce |b 5 |
700 | 1 | _ | |a Consortium, sc-eQTLGen |b 6 |e Collaboration Author |
700 | 1 | _ | |a Alquicira-Hernández, José |b 7 |e Contributor |
700 | 1 | _ | |a Kaptijn, Daniel |b 8 |e Contributor |
700 | 1 | _ | |a Korshevniuk, Maryna |b 9 |e Contributor |
700 | 1 | _ | |a Lee, Jimmy Tsz Hang |b 10 |e Contributor |
700 | 1 | _ | |a Michielsen, Lieke |b 11 |e Contributor |
700 | 1 | _ | |a Neavin, Drew |b 12 |e Contributor |
700 | 1 | _ | |a Oelen, Roy |b 13 |e Contributor |
700 | 1 | _ | |a Ripoll-Cladellas, Aida |b 14 |e Contributor |
700 | 1 | _ | |a Vochterloo, Martijn |b 15 |e Contributor |
700 | 1 | _ | |a Ando, Yoshinari |b 16 |e Contributor |
700 | 1 | _ | |a Bayaraa, Odmaa |b 17 |e Contributor |
700 | 1 | _ | |a van Blokland, Irene |b 18 |e Contributor |
700 | 1 | _ | |a Dieng, Mame M |b 19 |e Contributor |
700 | 1 | _ | |a Gordon, M Grace |b 20 |e Contributor |
700 | 1 | _ | |a Groot, Hilde E |b 21 |e Contributor |
700 | 1 | _ | |a van der Harst, Pim |b 22 |e Contributor |
700 | 1 | _ | |a Hon, Chung-Chau |b 23 |e Contributor |
700 | 1 | _ | |a Idaghdour, Youssef |b 24 |e Contributor |
700 | 1 | _ | |a Manikanda, Vinu |b 25 |e Contributor |
700 | 1 | _ | |a Moody, Jonathan |b 26 |e Contributor |
700 | 1 | _ | |a Nawijn, Martijn C |b 27 |e Contributor |
700 | 1 | _ | |a Okada, Yukinori |b 28 |e Contributor |
700 | 1 | _ | |a Stegle, Oliver |0 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3 |b 29 |e Contributor |u dkfz |
700 | 1 | _ | |a Park, Woong-Yang |b 30 |e Contributor |
700 | 1 | _ | |a Rajagopalan, Deepa |b 31 |e Contributor |
700 | 1 | _ | |a Shahin, Tala |b 32 |e Contributor |
700 | 1 | _ | |a Shin, Jay W |b 33 |e Contributor |
700 | 1 | _ | |a Trynka, Gosia |b 34 |e Contributor |
700 | 1 | _ | |a Westra, Harm-Jan |b 35 |e Contributor |
700 | 1 | _ | |a Yazar, Seyhan |b 36 |e Contributor |
700 | 1 | _ | |a Ye, Jimmie |b 37 |e Contributor |
700 | 1 | _ | |a Hemberg, Martin |b 38 |e Contributor |
700 | 1 | _ | |a Mahfouz, Ahmed |b 39 |e Contributor |
700 | 1 | _ | |a Melé, Marta |b 40 |e Contributor |
700 | 1 | _ | |a Powell, Joseph E |b 41 |e Contributor |
700 | 1 | _ | |a Franke, Lude |b 42 |e Contributor |
700 | 1 | _ | |a van der Wijst, Monique G P |b 43 |e Contributor |
700 | 1 | _ | |a Bonder, Marc Jan |b 44 |e Contributor |
773 | _ | _ | |a 10.1038/s41598-025-08808-3 |g Vol. 15, no. 1, p. 28407 |0 PERI:(DE-600)2615211-3 |n 1 |p 28407 |t Scientific reports |v 15 |y 2025 |x 2045-2322 |
909 | C | O | |o oai:inrepo02.dkfz.de:303376 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)ed3a2ed903bfbc6b0c33ef7009b141ce |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 29 |6 P:(DE-He78)9aabcfee1a1fc9202398a45a63f0b1e3 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-312 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Funktionelle und strukturelle Genomforschung |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SCI REP-UK : 2022 |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-07-29T15:28:26Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-18 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-18 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-18 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-18 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-18 |
920 | 1 | _ | |0 I:(DE-He78)B260-20160331 |k B260 |l B260 Bioinformatik der Genomik und Systemgenetik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)B260-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|